
Developing an Audio Unit plugin using a

digital waveguide model of a wind instrument

Tobias G. F. Carpenter (s0838740)
T
H
E

U N
I V E R S

I T
Y

O
F

E
D I N B U

R
G
H

Final Research Project: Dissertation

MSc in Acoustics and Music Technology

Edinburgh College of Art

University of Edinburgh

2012

Abstract

This thesis concerns the development of an Audio Unit Instrument plugin using phys-

ical models of wind instruments.

i

Acknowledgements

I would like to thank my supervisor Craig J. Webb for all of his invaluable help over

the course of this project, without his regular input the achievements would have been

far lesser. I would also Like to thank Stefan Bilbao and Mike Newton for developing

my interest in physical modelling.

ii

Declaration

I declare that this thesis was composed by myself, that the work contained herein is

my own except where explicitly stated otherwise in the text, and that this work has not

been submitted for any other degree or professional qualification except as specified.

(Tobias G. F. Carpenter (s0838740))

iii

Table of Contents

1 Introduction 1

2 Digital Waveguide Theory 4

2.1 Digital Waveguides and Delay Lines 4

2.2 Derivation of the DWG principle . 6

3 Implementing Digital Waveguides in Matlab 8

3.1 Basic Delay Line . 8

3.2 Interpolating for tuning . 9

4 Developing the DWG model 12

4.1 The Clarinet . 12

4.2 The Flute . 14

5 Audio Units 18

5.1 Core Audio and Audio Units . 18

5.2 The Core Audio SDK . 20

6 Implementing the Audio Unit Instrument plugin 22

6.1 Initial testing of Matlab Code . 22

6.2 Basic code in AU Template . 23

6.3 C++ classes for Unison . 27

6.4 Real-time parameter control . 30

6.5 Lookup Table for Improved Tuning 32

7 Evaluation of Results 34

7.1 The Clarinet Model . 34

7.2 The Flute Model . 36

iv

7.3 Sonic Evaluation . 36

8 Conclusions 40

Bibliography 42

A Matlab code 44

A.1 Clarinet Code . 44

A.2 Flute Code . 46

B Audio Unit code 49

B.1 Clarinet Class . 49

B.2 Flute Class . 51

B.3 TestNote Code . 54

B.4 Render Method Code . 55

v

Chapter 1

Introduction

The latest research into the understand of musical instruments uses computers to build

physical models. Julius Smith defines a model as being any form of computation that

predicts the behaviour of a physical object or phenomenon, based on its initial state

and any input forces. Models developed for music and audio often replace the object

upon which they are based. The prediction of such a model is simply the desired sonic

output.

Physical modelling of musical instruments is not only useful for acoustic research but

also one of many ways to synthesise sound. The aim of a physical model is to produce

a sonically accurate imitation of a musical instrument, however this can be difficult,

particularly in wind instruments. Another common approach which can be found in

many synthesisers which try to reproduce the timbre of a real instrument is to use sam-

ples, that is, simply playing back prerecorded audio clips of the desired instrument.

In most cases, synthesisers that use samples as part of their sound engine will include

multiple recordings of the same pitch and will select the appropriate recording based

on the input parameters specified by the performer (e.g. velocity). The aim being to

deliver a more expressive output. However to develop a truly realistic system based

on this approach one would need an infinite amount of samples to allow for all possi-

ble subtle variations, which in turn would necessitate infinite memory to store them,

as well as a super computer to be able to find and load the correct sample. These

computational and memory restraints limit the expressive potential of a sample based

machine; only a limited number of samples may be used if the system is to be usable in

real-time. Physical modelling provides a real-time alternative that can produce sonic

1

Chapter 1. Introduction 2

results that are much more expressive than sample based machines, as the sound en-

gines contained in such synthesisers are based upon the actual physical attributes of

the instruments they model. Physical modelling of musical instruments does not take

quantum effects into consideration; we rely on Newtonian mechanics:

F = m
dv
dt

(1.1)

where F is force,

m is mass,

and dv
dt is acceleration.

Although this simple equation is the underlying mathematical basis for all musical

physical models, this does not mean that developing such a model is itself a simple

task. Models can become extremely complex and simplifications must be made in

order to implement them, such as the linearisation of non-linear behaviour. These sim-

plifications are often necessary due to a lack of a proper acoustic understanding of the

behaviour of an instrument, other times they are implemented to improve computa-

tional efficiency. In all cases the aim is to simplify the model to the point of being able

to create it without losing any sound quality or expressive control. To implement such

a model various development tools are needed.

Matlab is an excellent tool for developing and testing algorithms, its language and

interface are simple enough to make computationally demanding tasks fairly quick

and simple, this is why it is often used for audio DSP design. The main disadvantage it

presents in this context is that any audio processing is strictly non - realtime. Although

Matlab can be used to mould and shape audio DSP algorithms, if they are to be used

in realtime then other languages and software will be needed.

Logic Pro is the flagship digital audio workstation from Apple. Originally created by

Emagic, it was purchased and further developed by Apple in 2002. The latest version

is Logic pro 9, with the 10th edition to be released very shortly. As well as being an

incredibly power DAW, amongst the best available today, Logic is specific to Apple

OS X. This is why for many it is the DAW of choice and is found in many settings,

from professional to home studios. In most DAWs the user can add to the existing set

of instruments and effects with plug-ins, in Logic and indeed under OS X in general

these plug-ins are known as Audio Units. This extendibility and its popularity made

Logic and the Audio Unit format an obvious choice for this project.

This thesis is concerned with the development of an Apple Audio Unit Instrument

Chapter 1. Introduction 3

based on digital waveguide models of wind instruments. A number of steps will need

to be considered in order to implement a fully functioning real-time plugin. The de-

sign of the digital waveguide models (DWG) will be examined first. Details of how

Apple processes audio in real-time will be presented, and finally the processes that

were required to build an Audio Unit based on DWG models will be discussed.

Chapter 2

Digital Waveguide Theory

Digital waveguide modelling was first developed in the 1980s by Julius Smith, since

then it has remained the most popular and commercially successful physical modelling

methodology. It gained such wide popularity because it allows the implementation of

certain musical models with far less computational expense than other methods. In-

struments who’s vibrating parts can be modelled by the one-dimensional wave equa-

tion and are mostly linear are particularly well suited to DWG implementation [1].

As the theory is based on descrete-time modelling of the propagation and scattering

of waves, it is important to understand these concepts; to this end we will examine

the one-dimensional wave propagation along a vibrating string in order to derive the

digital waveguide principle, after looking at what makes up a digital waveguide.

2.1 Digital Waveguides and Delay Lines

Delay lines form the basis for all digital waveguide modelling, their basic function

is to delay a signal by a certain amount of time, usually expressed in samples. The

actual time delay depends on the sample rate as well as the size of the delay line; for

a 100 sample delay at a standard sample rate of 44100 Hz, the total time delay will be

100/44100 seconds, 2.27 milliseconds.

Delay lines can be used to simulate the propagation of travelling waves. A travelling

wave is any kind of wave which propagates in a single direction with negligible change

in shape [2]. An important subcategory is plane waves, which give rise to the creation

of standing waves inside rectangular enclosures with parallel walls. On a much smaller

4

Chapter 2. Digital Waveguide Theory 5

scale, plane waves also dominate in cylindrical bores, like the flute and the clarinet[3].

Figure 2.2 intuitively displays why a delay line can be used to model the propagation of

this type of wave; in the ideal lossless case, the wave simply travels along the acoustic

tube without being deformed or modified in any way. The only change the system goes

through is a spatial, and therefore temporal displacement. Transverse and longitudinal

waves in a vibrating string are also traveling waves; this important to note as this

example will be used in the following section as the basis for derivation of the digital

waveguide principle.

Figure 2.1: Schematic representation of a digital waveguide M samples long at wave

impedance R.

Figure 2.2: Travelling wave propagating down along a delay line.

A lossless digital waveguide can be modelled as a bidirectional delay line[4]. Each

delay line still contains an acoustic travelling wave, propagating in opposing directions

to each other. As it will be explained in the following section, the vibration of an

ideal string can be modelled by the sum of two travelling waves that are propagating

in opposite directions[5]; thus a delay line can model an acoustic plane wave, and a

DWG can model any one-dimensional acoustic system such as a vibrating string, the

bore of a clarinet or the pipe of a flute. The output of a digital waveguide is obtained

by summing both of the travelling wave components in the individual delay lines.

Chapter 2. Digital Waveguide Theory 6

2.2 Derivation of the DWG principle

Figure 2.3: Part of an ideal travelling wave.

Figure 2.3 shows part of an ideal string, the wave equation for which is:

Ky00 = eÿ (2.1)

where:

K = string tension

e = linear mass density

y = string displacement

y = y(t,x)

ẏ = ∂
∂t y(t,x)

y0 = ∂
∂xy(t,x)

It can be readily checked that any string shape that travels to the left or the right with

speed c =
p

K/e is a solution to the wave eqaution [3][6]. If we denote waves travel-

ling to the right as yr(x� ct) and those travelling to the left as yl(x+ ct), where yr and

yl are arbitrary twice differentiable functions, then the general class of solutions to the

lossless, one-dimensional, second-order wave equation (2.1) can be expressed as:

y(x, t) = yr(x� ct)+ yl(x+ ct) (2.2)

As time is the main variable for expressing signals we can rewrite this as:

y(t,x) = yr(t � x/c)+ yl(t + x/c) (2.3)

These equations, composed of opposite travelling wave components are known as the

d’Alembert solution to the wave equation[3]. If signals yr and yl are bandlimited to

one half of the sampling rate, we may sample them without any loss of information,

the equations then become:

Chapter 2. Digital Waveguide Theory 7

y(tn,xk) = yr(tn � xk/c)+ yl(tn + xk/c) (2.4)

y(tn,xk) = yr(nT � kX/c)+ yl(nT + kX/c) (2.5)

y(tn,xk) = yr[(n� k)T]+ yl[(n+ k)T] (2.6)

where T is the sample period and X is the spatial interval between samples (T = X/c).

As T multiplies all arguments, we suppress it and define:

y+(m) = yr(mT) (2.7)

and

y�(k) = yl(mT) (2.8)

The + and the � are defined for notational convenience and denote right and left going

travelling waves respectively. Finally the separate wave components must be summed

together to produce the output:

y(tn,xk) = y+(n� k)+ y�(n+ k). (2.9)

Although an ideal string was used as the starting point for this derivation, the results

and principles apply to acoustic tubes in exactly the same way. This is because the

most commonly used digital waveguide variables for acoustic tube simulation (travel-

ing pressure and volume-velocity) samples are exactly analogous to the traveling force

and transverse-velocity waves used for vibrating string models.

Chapter 3

Implementing Digital Waveguides in

Matlab

3.1 Basic Delay Line

In many DSP operations very small delays are used, this is the case of first and second

order filters. Here the delays are implemented in a first-in first-out structure (FIFO);

the samples are simply fed into the filter by overwriting the previously stored values

in the same location in memory. This type of structure is perfectly suitable for small

delays, however as the size of the delay grows, so does the number of samples that

must be copied and shifted in memory. Clearly, with this type of structure as the delay

length increases, so does the computational expense. Thankfully an alternative that

does not require any shifting of samples exists: the circular buffer[7].

A circular buffer is a fixed length data structure that uses a buffer as if it was con-

nected end - to end. It works in the opposite fashion to FIFO structures; the samples

are held in the same locations in memory and the reading and writing processes are

incremented along the buffer, by means of a pointer, who’s value is an integer that is

also incremented each time step.

The reading operation is conducted first, taking the output of the delay line from the

current position in memory, to which a new input value is then written. Once these

two processes are accomplished the pointer increments to the next position along the

delay line. When the the last position, a mechanism of resetting the value of the pointer

allows the buffer to loop back on itself and read and write from its first position, hence

8

Chapter 3. Implementing Digital Waveguides in Matlab 9

the name circular buffer.

The following code shows how a delay line can be implemented in Matlab:

%---

%This script implements a delay line with a delay of ten samples

%---

clear; close all

%---

delay=10; % set a delay length of 10 samples

d= zeros(1,delay); % define a delay line of length delay (10 samples in this case)

% define the input to the delay line as an impulse

input= zeros(1,100);

input(1)= 1;

output= zeros(1,100); % initialise the output vector as zeroes

ptr1=1; % initialise the pointer to point to the first position along the delay line

for (i= 1:100)

output(i)= d(ptr1); % read the output from the current position along the delay line

d(ptr1) = input(i); % write a new input to the same position along the delay line

ptr1 = ptr1+1; % increment the pointer value for use during the next time step

if (ptr1>delay) ptr1=1; % if the pointer value exceeds

% that of the length of the delay line reset it to 1.

end

end

output % print the output of the delay line

The conditional statement which binds the value of the pointer, allows it to increase

to the size of the delay, then resets it to 1, Matlab’s lowest index. This action is what

implements the wrapping around of the buffer on itself. As mentioned above, the basis

for all digital waveguide models is a pair of delay lines that are often connected by a

feedback loop. To realise this basic model in Matlab and C++, the output of the second

delay line must be fed back into the input of the first delay line. Of course this loop

contains many other elements which will be detailed later on.

3.2 Interpolating for tuning

In all digital waveguide models the length of the delay sets the frequency of the output;

in the case of the models developed here, the longer the delay, the lower the note and

vice versa. From the code above it is easy to see that the delay length must be an integer

value, as delay and frequency are directly related, this implies that the frequency of the

Chapter 3. Implementing Digital Waveguides in Matlab 10

Figure 3.1: Schematic representation a circular buffer. Although this schematic ap-

pears to contradict the text by displaying separate memory locations for the read and

write processes this is in fact not the case; two halves of separate time steps are shown

for diagrammatical purposes.

output is quantised. As a result, digital waveguide models that use only basic delay

line theory are only capable of producing a discrete set of pitches and consequently

suffer from very poor tuning characteristics.

There are however certain techniques that can be used to improve the tuning of the

model, such as the use of an allpass filter or linear interpolation. Both of these meth-

ods were implemented and it was found that the best results were produced by linear

interpolation for a wind instrument model. In terms of DSP and digital waveguide

implementations, the interpolated value is calculated by taking a weighted average be-

tween the nth and the n+1th values.

let h be a value between 0 and 1 which represents the amount by which we wish to

interpolate a signal y between times n and n+ 1. We can then define the interpolated

signal ŷ as:

ŷ(n+h) = (1�h).y(n)+h.y(n+1) (3.1)

To create an interpolated delay line in Matlab a few changes to the original code must

Chapter 3. Implementing Digital Waveguides in Matlab 11

be made. To implement the fractional delay equation above a value for y(n+ 1) is

needed, to that end a second pointer is created and initialised to ptr2 = 2 or ptr2 =

ptr1+1. To accommodate this extra value the delay line length now needs to become

length(d) = (n+1), for a delay of n samples.

%---

% file name: Interpolated delay line

%This script implements an interpolated delay line that delays with a fractional delay of eta

%---

clear; close all

%---

delay = 10;

eta = 0.5;

d = zeros(1,delay+1);

input = zeros(1,100);

input(1) = 1;

ptr1 = 1;

ptr2 = 2;

output = zeros(1,100);

for (i= 1:100)

output(i) = eta*d(ptr1)+eta*d(ptr2);

d(ptr1) = input(i);

ptr1 = ptr1+1;

ptr2 = ptr2+1;

if (ptr1>delay+1)ptr1=1; end

if (ptr2>delay+1)ptr2=1; end

end

output

Delay lines are the central part of digital waveguide models, however other elements

must be included in order to recreate the behaviour of an instrument such as a flute or

a clarinet.

Chapter 4

Developing the DWG model

The final Audio Unit that was developed contains two digital waveguide algorithms,

allowing the user to play a model of a flute or a model of a clarinet, or indeed a combi-

nation of both. At the heart of each of these models is a digital waveguide that is being

used to simulate the bore of each instrument. The clarinet model was based upon a lab

script written by Jonathan A. Kemp, the code from which can be found in Appendix

A. The algorithm presented here is a well known basis for many different wind mod-

els, including the flute model that was developed. In this chapter both of the digital

waveguide models will be thoroughly examined, starting with the clarinet.

4.1 The Clarinet

Figure 4.1: Schematic representation of the clarinet.

For the purposes of developing a physical model, the clarinet can be thought of as three

distinct parts, the mouthpiece, the bore and the bell.

12

Chapter 4. Developing the DWG model 13

The bell passes high frequencies and reflects low frequencies, where ‘high’ and ‘low’

are relative to the diameter of the bell [5]. An analogous system is a crossover net-

work in a loudspeaker; it splits the frequency spectrum into discrete bands and send

the higher frequency component to the tweeter and the remaining lower frequency

components to a woofer and/or a subwoofer.

Digital waveguide technology is inspired by transmission lines, indeed they are a dig-

ital equivalents. The clarinet model presented here is open at the bell and closed at the

mouth piece. In transmission lines such as system is known as a quarter wavelength

transformer, due to the fact that only one quarter of the wavelength of a wave is initially

setup in the transmission line. In the digital waveguide model the same thing occurs.

The fact that the bell diameter is much smaller than the length of the bore, results

in most waves being classified as low frequency and leads to most of the frequency

spectrum being reflected back up towards the mouthpiece.

A brief description of the basic function of the mouthpiece and reed is presented, for

a more detailed account please see [4]. If the reed mass is neglected, its effect can be

modelled as a lookup table evaluation per sample, the input to which is the difference

between the pressure inside the player’s mouth and the pressure of the signal reflected

back from the bell. The output of the lookup table is a reflection coefficient, which

is applied to the pressure “seen” at the mouthpiece inside the bore. The lookup table

corresponds to a nonlinear termination to the bore, in practice it is modelled by a

polynomial (see code in appendix A.1). The reflection coefficient function (lookup

table) can be varied to alter the tone of the model by varying the embouchure. For

example adding an offset to the reflection coefficient function can have the effect of

biting harder or softer on the reed, resulting in subtle tonal changes.

The code generated from the lab script adheres to this design; however the bore is

implemented using a two delay lines, that were placed end-to-end in a single piece of

memory. Effectively the delay lines can be thought of as a single unit, which gives rise

to tuning issues. As it was shown in the previous chapter, to improve the tuning of a

digital waveguide model, linear interpolation can be used on the output of the delay

lines.

The single delay line implementation only allows access to the output of the whole

model, as opposed to the outputs of the individual delay lines. As only the sum of

both travelling waves is accessible, improving the tuning of the model is made harder.

Chapter 4. Developing the DWG model 14

Interpolating the output of the individual delay line does little if anything to improve

the tuning. To do so the travelling waves need to be processed separately, before being

summed together to create the interpolated output. The clarinet model was altered ac-

cordingly, to include two separate delay lines, allowing the system to produce outputs

deemed in tune.

Figure 4.2: Frequency spectrum plots of the Clarinet model’s output at a desired fre-

quency of 700Hz, before and after linear interpolation.

The desired frequency of the output is directly related to the length of the delay:

Fs = 44100; % sample rate

f = 400; % desired output signal

dex = ((Fs/f)-0.7)/4); % calculations of the exact delay length

delay = floor(dex); % calculation of the integer part of the delay length

frac = dex - delay; % calculation of the fractional part of the delay length

As the effect of the bell is to let high frequencies escape from the bore and to keep low

frequencies inside it, it can be modelled as a lowpass filter. The implementation in the

Audio Unit uses a simple first order averaging filter:

delayendnext = intermediate;

d2(d2ptr1) = -0.48*(intermediate+delayedend):

delayedend = delayendnext;

4.2 The Flute

As mentioned in the introduction, the flute model developed here is based on the clar-

inet model discussed above, examining figure 4.4, illustrates the similarities between

Chapter 4. Developing the DWG model 15

Figure 4.3: Schematic representation of the clarinet model.

the two models. A bidirectional delay line is used to model the flute’s pipe and the

reflection filter is the same one-pole averaging low pass filter as before. Indeed the

only change applied to this part of the model is that the output filter has been removed,

as this implementation does not require one to produce acceptable flute like tones. The

mouthpiece design is where the two models differ.

The flute belongs to a class of instrument known as self-excited oscillators [8]. An

unstable air jet is produced from the lips of a player and travels towards a sharp edge,

known as the labium. While travelling, the jet crosses the acoustic field formed by the

flute pipe or resonator which perturbs its trajectory. Air jets are intrinsically unstable,

as a result the perturbation is travels and is spontaneously amplified. The interaction

of the perturbed flow with the labium provides the necessary acoustic energy to sustain

the acoustic oscillation in the pipe, closing a feedback loop [9]. The perturbed flow is

amplified to the point that it reaches a lateral displacement which prevents its structure

from being cohesive and results in the air jet being modified. Initially the air jet grows

linearly, until the point that the perturbed flow interacts with it, resulting in the jet

breaking into vortices and eventually turbulence. This reflects the non-linearity of an

air jet inside a flute. The behaviour of the air jet is modelled by a static non-linear

element, which uses a sigmoid function[10][11]. Many natural non-linear processes

exhibit a growth from a small beginning which accelerates and reaches a plateau. A

sigmoid function behaves in the same way; it possesses an S shape centred around 0.

The model developed in this project uses the y = x� x3 function preferred by Perry

Cook and Gary Scavone which is shown in figure 4.5.

Chapter 4. Developing the DWG model 16

Figure 4.4: Schematic representation of the Flute model.

As mentioned, the air jet travels a short distance from the player’s lips to the labium.

To accommodate for this an extra delay line is added to the model, in figure 4.4 it is

called Jet Delay. The length of this delay line must be set to half the length of one

of the other delay lines, in order to produce notes of the correct pitch; by varying this

length overblowing effects are achieved.

Figure 4.4 also demonstrates how the input to the system is constructed. The section

to the left of the diagram labelled “mouth Pressure” displays that the input is made

of three separate parts, the most important of which is a pressure envelope, which is

displayed in the middle. A white noise signal is multiplied together with the envelope

and the result of this calculation is then summed together with the envelope. The same

operations are done using the pressure envelope and a sine wave. The white noise

is used to add authenticity to the resulting sound, giving a more natural breathy tone

while the sine wave is added to the implementation to allow amplitude modulation,

resulting in a vibrato effect.

Figure 4.5: Sigmoid function y = x� x3

Chapter 4. Developing the DWG model 17

The Matlab scripts developed here form the basis of the plugin; to allow the final

product to be usable in real-time they were implemented in an Audio Unit.

Chapter 5

Audio Units

5.1 Core Audio and Audio Units

Core Audio is a low level API that deals with sound and allow users to handle audio in

Apple OS X. It combines C++ programming interfaces with tight system integration

with the audio signal chain [12]. Apples audio architecture is as follows:

Figure 5.1: Apple’s Audio Architecture

The Hardware abstraction layer (HAL) sits below the Core Audio and provides a con-

sistent interface between the system hardware and audio applications. A special Audio

Unit called AUHAL allows the Audio Unit to interact directly with the HAL.

In most cases Audio Units are not stand alone software, they can only work in con-

junction with another program which is known as a host. The Host and the AU transfer

data from one to the other, the flow of this exchange is illustrated by figure 5.2.

18

Chapter 5. Audio Units 19

Figure 5.2: Audio Unit Data Flow [13]

The audio Unit view provides the user with the ability to change the parameters in

realtime. This information is passed back and forth from the Audio Unit to the host.

This is also the way that audio flows inside these structures, be it before or after having

been processed. The host initiates the flow by calling the the render method of the

last AU in the chain, which is known as the graph. Audio data is continually passed

and processed as slices. Apple defines a frame as one sample across all used channels

(ex: number of samples for stereo: 2). A slice is a number of frames, defined as 2n

where n is an integer typically in the range 8 to 12. An important relation here is that

increasing the slice size linearly increases the inherent latency [13] . This is because

the host expects the slice buffer to be filled in a given amount of time, in relation to the

size of the slice (amongst other factors). The Audio Unit developed in this project does

not suffer from latency issues, as it is relatively simple and computationally efficient.

This high-level view is helpful to get to grips with the basics of Audio Units and how

they interact with the rest of OS X, however to build an AU almost always requires the

use of the Core Audio SDK

Chapter 5. Audio Units 20

5.2 The Core Audio SDK

With the arrival of Apple’s latest version of their IDE, Xcode 4, Audio Unit devel-

opment underwent some severe changes. A great many subtle improvements were

made, for example the build phase for the AU component has become an automatic

feature, the developer no longer has to worry about copying components to the cor-

rect files so that they may be used by the host applications. Small changes like this

allow the developer more time to concentrate on the audio DSP and user interface de-

velopment, as less time needs to be spent dealing with the complexities of the Apple

OS X component Manager. The improvements that the new version of Xcode brought

were however accompanied by some serious difficulties for Audio Unit development,

chiefly the templates for audio effects and instruments were removed. Furthermore in

Xcode 4.3.2 and later the SDK itself was removed and replaced by a package named

“Audio Tools for Xcode”, which is available to download from Apple’s development

website. This package contains most of the classes that are necessary for developing

Audio Units, however some rewriting of classes, along with extensive organising of

the different libraries and frameworks is needed to be able to develop a working SDK.

This in itself is a complex and time consuming task . Special thanks must be given to

my supervisor Craig J. Webb, Phd candidate at the University of Edinburgh, for im-

plementing a working SDK as well as a new instrument template file from which new

AUs can be created.

Although it is possible to develop an Audio Unit from scratch, using the SDK greatly

simplifies the task and is the method that Apple endorses, and indeed uses themselves.

The SDK includes a great number of helper classes that are designed to insulate the

developer from having to deal with the Core Audio API, thereby simplifying the task

creating an Audio Unit[13].

Developing an AU effect and developing an AU instrument are analogous tasks in

many ways, their .cpp files contain methods that need to be overwritten by the de-

veloper [14]. For effects the DSP is performed in the process method of the AUK-

ernelBase class, however for instruments it takes place in the render method of the

AUInstrument class. The main DSP development of an Audio Unit takes place within

one of these methods, depending on the type of plug-in being built.

Another consideration of Audio Unit development is the user interface. The main

aspect of real-time audio processing is the ability to vary the Audio Unit’s parameters

Chapter 5. Audio Units 21

at the same time as the audio is being processed and played.

The SDK will implement a standard user interface without the need to for any GUI

programming; the developer simply has to specify the parameters that the user may

vary. When the Audio Unit is instantiated inside a host application, the latter will

create a generic view , consisting of a number of sliders that allow the user to control

the parameters specified by the developer.

Although these standard generic views are fully operational it is also possible to create

a custom view. If properly designed, a custom view will improve the user experience by

creating a product that is not only more attractive, but also more functional. A custom

view is advantageous over a generic view because it allows the developer the ability to

hide unnecessary detail and also allows the developer to chose what kind of UI controls

are used (rotary knob, slider, button, etc.) and how they are laid out. Custom view

development is an object oriented programming task which uses Apple’s cocoa API.

Implementation of the custom view will be detailed in the following chapter.

The SDK contains a large number of files that are involved in almost every aspect

of Audio Unit programming. In creating an AU instrument the important points to

understand are the attack method found in the header file and the render method located

in the .cpp, which is where most of the DSP is performed. In the following chapter the

methods used to implement the Audio Unit will be explained.

Chapter 6

Implementing the Audio Unit

Instrument plugin

6.1 Initial testing of Matlab Code

Matlab is a powerful development tool that contains extensive design and analysis

tools, which can be very useful to a developer. The ability to plot and playback audio

signals within the native application make it absolutely vital to developing audio DSP,

and why it was used to develop the physical models in this project. However, the code

generated in Matlab must be converted to C++ as this is the language in which Audio

Units are written.

Instead of combining the tasks of converting the Matlab code to C++ and positioning it

correctly within the Audio Unit Instrument template, we separate these tasks, creating

an intermediate step that consists of writing a stand-alone C++ port. This means the

Matlab code is first written in a separate C++ project, before the Audio Unit template

is utilised. This intermediate process is undergone to try and minimise the creation of

errors, while developing the Audio Unit code.

Matlab and C++ possess many similarities, however an important difference is that

Matlab starts indexing at 1 and C++ starts indexing at 0. This small difference can be

a great source of errors; the intermediate step makes it much easier to spot problems

relating to this issue. If the developer creates errors inside the AU template the com-

piler will display messages relating to them and locate them in the code; even with this

help the complexity of the AU templates can make it hard to determine why the error

22

Chapter 6. Implementing the Audio Unit Instrument plugin 23

is occurring, this intermediate step makes debugging a much simpler task.

Analogously, if an Audio Unit containing code which was tested in a stand-alone C++

port generates errors, the developer can presume they are not due to the code contained

in the straight port. However if the developer skips the intermediate step, the prove-

nance of the error can be much larger as the converted Matlab code may now be the

source of problem, along with the rest of the code contained in the AU.

A stand-alone C++ port is written within a command line project using Xcode. The

resulting code is very similar to the original matlab code, as the two languages remain

very similar on a basic level. The main implementation differences are that in C++,

each variable must have a specified type (double, float, integer, etc), where as in matlab

all variables are single precision floating point numbers, unless specified otherwise. Of

course the other important difference is the indexing.

A stand-alone C++ port was created for both of the physical models developed in Mat-

lab.To verify the newly created code, the outputs of each C++ script were separately

copied back to Matlab, where they were plotted and played back. The resulting plots

were found to be almost identical to the Matlab plots and the audio generated from the

C++ code was indiscernible from that generated using Matlab. These positive results

imply that the C++ ports were successful.

6.2 Basic code in AU Template

The project template for an Audio Unit Instrument contains a large number of files,

most of which make up the frameworks that form the Core Audio SDK, and as a result

are not altered by the developer. The developer is primarily concerned with the main

header file and the main .cpp file, which are created as part of a new project. In this

section details of how these two files work will be given, as well as details of how the

physical model code was organised within the template.

The header file contains two sections which are important to understand here, the first

is a struct object called testNote. this object is the most important part of the tem-

plate. Its existence is fundamental to the operation of the Audio Unit, as it is used to

implement the real-time DSP. testNote is made up of five member functions, along

with any developer specified member variables.

Chapter 6. Implementing the Audio Unit Instrument plugin 24

The first two functions in the struct object are its constructor and destructor. Within the

constructor, memory is allocated to all data structures that require it, such as arrays for

delay lines. This is also where variables are initialised and variables that do not change

are declared. The destructor performs the inverse role of the constructor by clearing

the allocated memory.

The Attack function is the third that makes up the testNote struct. It is not only an

important part of testNote but is in fact one of the most important parts of the Audio

Unit. In a working Audio Unit, the Attack function is called every time a new key

press is initiated. This is where variables that change for every note are declared, for

example:

new_f = Frequency();

the variable new f stores the frequency of the selected note, which is determined by

the function Frequency(). The variables setup in the attack method are then used in

the render method.

The Amplitude function is the fourth found in the testNote struct, its role is simply to

return the amplitude of the note. This information is used for voice stealing, a problem

associated with polyphonic synthesisers. The instrument developed in this project is

monophonic, as such we can disregard the amplitude method.

The fifth function that is declared in testNote is the render method, which will be

discussed in more detail further on.

The header file also contains a class which takes the name of the project when it is

originally created, in this case it is called EPMcocinst. The class is made up of public

member function declarations, which relate to topics that will be discussed in later

sections. The last element that makes up the class is the declaration of a private variable

of type testNote:

TestNote mTestNotes[kNumNotes];

This declaration creates an array called mTestNotes, of size kNumNotes, and of type

TestNote. kNumNotes is defined at the top of the header file and specifies the number

of allowed note presses at a given time; in this case kNumNotes is set to one, making

the synthesiser monophonic.

EPMcocinst.cpp can be regarded as the main file of the Audio Unit. It is made up

Chapter 6. Implementing the Audio Unit Instrument plugin 25

of the member functions of the class EPMcocinst, most of which relate to obtaining

parameter information and will be looked at in detail in a later section.

The .cpp file also includes the render method of testNote, which is the most impor-

tant part of the Audio Unit, as this is where the main DSP is conducted. The host

application calls the Audio Unit once for every slice of audio, prompting the render

method to fill an output buffer with new values. A slice of audio is made up of 256

samples, this means that this process occurs every:

t = 256/44100 = 0.0058 seconds (6.1)

This mechanism of updating the buffer for every new slice of audio is what makes the

Audio Unit a real-time plugin.

The monophonic nature of the Audio Unit allows for only one note to be played at a

given time. This leaves the developer with a problem; what happens when a performer

starts a new note without having fully released the previous key? In this event click-

ing will occur, as the new key press will initiate the loading of new values for all the

related Audio Unit parameters, which will overwrite the previous ones. This overwrit-

ing process is where the problem lies; as the previous values are abruptly abandoned

the output level goes from some constant value to zero instantly, resulting in an audi-

ble click. A flagging system was developed to solves the problem. The basic idea is

that when this situation arises, the outgoing note is not abruptly released, but instead

quickly ramped down to zero, at which point the new note is quickly ramped up; re-

sulting in the removal of the click. As part of this system three class member variables

are declared in TestNote:

double use_amp;

bool loaded, fast_cut;

fast cut and use amp are used in the render method to determine a coefficient that

is multiplied with the final output in order to ramp the signal up or down, when

fast cut = TRUE.

Within the attack method loaded is initially set to be false and a conditional expression

is created, which states that fast cut is true if an output is playing and false otherwise.

Within the render method a conditional expression states that:

Chapter 6. Implementing the Audio Unit Instrument plugin 26

if (use_amp < 0.0) fast_cut = FALSE;

This means that if use amp is negative, i.e. the output signal has been ramped down,

fast cut is no longer true, as the output will have reached zero. At this point, it is

time to load the values provided by the new key press, which is done by a second

conditional expression:

if (!fast_cut){

if (!loaded)

{

use_amp = amp;

pointer = new_pointer;

endptr = new_endptr;

delay = new_delay;

delayedend = new_delayedend;

delayendnext = new_delayendnext;

loaded = TRUE;

// clear delayline

for(int i=0;i<delay;i++) d[i] = 0.0;

}

}

This code states that if fast cut is not occurring and the new values are not loaded

then update the variables with the new values. Once the variables have been updated

loaded is set to TRUE, ending the updating process and allowing the incoming note to

be ramped up and played. The expression also clears any values that were stored in the

delay line.

Before the final plugin was developed two separate AUs were implemented, each one

containing a single physical model. In both cases the resulting Audio Unit code was

placed in accordance with the above description; delay lines were initialised in the

constructor, the delay line length for a given frequency was determined in the attack

method, and all code containing calculations needed to be done in real-time was placed

in the render method. The final plugin allows up to four unison voices; to accommodate

this capacity the code was greatly modified by creating individual classes for each

Chapter 6. Implementing the Audio Unit Instrument plugin 27

model.

6.3 C++ classes for Unison

C++ is an object oriented extension to the C programming language, it allows a devel-

oper to use classes, where previously this was not possible. Effectively this means that

C++ allows a developer to produce code that is more modular than if it were written in

C.

In traditional analogue synthesisers, Unison is an effect that occurs when two or more

identical oscillators are detuned relative to each other and played simultaneously; the

resulting impression is a much bigger sound. Here the same principle is applied; unison

is implemented by allowing up to four voices for both the flute and the clarinet to be

played at the same time.

There are two possible ways to achieve this effect programmatically, the first is to copy

and paste the existing code as many times as required, altering the frequency of each

new instance and finally summing the outputs. This is rather inefficient and unrefined,

as it requires the same code to be written multiple times. The second possibility is to

write a class for each model.

The classes for the flute and the clarinet are identical in form, they both contain five

methods and a list of class member variables. Each method accomplishes the job of

part of the code previously contained in either the header file or the .cpp file. The im-

plementation of these classes allows the developer to remove the now obsolete sections

of code from their previous locations, resulting in much less cluttered header and .cpp

files. As the Clarinet and the Flute classes are identical in layout, and only differ in

content, the clarinet class will not be discussed further in this section; its code can be

seen in appendix B.1.

As for all C++ classes, the first two methods of the flute class are the Constructor and

the Destructor. In the constructor memory is allocated to the three delay lines in the

model by creating arrays for each of them. A fourth array is created and initialised

to accommodate the values for a lookup table, which will be discussed in section 6.5.

Finally all of the class member variables are given initial values. The destructor simply

releases all allocated memory.

Chapter 6. Implementing the Audio Unit Instrument plugin 28

The declaration for the third method is as follows:

void setDelayLength (double frequency, double tuneCoef);

This method is uses the input value frequency to calculate the length of the delay

lines which model the flute’s pipe, as well as the delay line that models the travelling

of the air jet. The second input to this method is a coefficient which relates to the

lookup table which is discussed in section 6.5.

The fourth method is defined as:

void resetPointers ();

This method is very simple, it is used to reset the delay line pointers to the initial

values they received in the constructor. This method relates to the system developed

for avoiding clicking on the output, and will be discussed further on.

The final method of the flute class is called the tick method and is declared as:

float tick(float breathp, double noiseCoef, double vibDepth,

double vibFreq, double Dlength);

The bulk of the flute class is contained in the tick method, as can be seen in appendix

B.2. The tick method contains the DSP code which needs to be computed in real-time.

it returns one sample of the output for every time step.

As mentioned the use of classes allows the developer to remove much of the code

contained in the header file and .cpp file. The attack method no longer contains a large

list of variables, as these are defined in the constructor of the class. The frequency

of the key press and the associated lookup table coefficient are still determined in the

attack method. It’s job is no longer to calculate values based on these variables, but

to pass their values to the class, where the calculations are now done. As most of the

variables have been removed from the attack method, they are no longer declared as

class member variables in TestNote. In their place five instances of both the flute class

and the clarinet class are created:

Fluteclass flu1, flu2, flu3, flu4, flu5;

Clarinetclass2 pipe1, pipe2, pipe3, pipe4, pipe5;

The render method is similarly stripped down due to the flute class’ tick method. Con-

ditional statements relating to the number of voices selected by the end user are found

Chapter 6. Implementing the Audio Unit Instrument plugin 29

in the render method. Each conditional statement defines a possible output, made up

of a numer of flute tick methods, summed with a number of clarinet tick methods.The

number of instances of each tick method is determined by the unison number selected

by the user.

The system for avoiding audible clicks remains very similar to the previous implemen-

tation. The same code which previously was setup remains, however the contents of

the second conditional statement in the render method is changed:

if (!fast_cut){

// Load new parameters if not done so...

if (!loaded)

{

use_amp = amp;

loaded = TRUE;

flu1.resetPointers();

flu2.resetPointers();

flu3.resetPointers();

flu4.resetPointers();

flu5.resetPointers();

flu1.setDelayLength(new_f, new_coef);

flu2.setDelayLength(new_f-0.5, new_coef);

flu3.setDelayLength(new_f+0.5, new_coef);

flu4.setDelayLength(new_f-0.667, new_coef);

flu5.setDelayLength(new_f+0.667, new_coef);

pipe1.resetAll();

pipe2.resetAll();

pipe3.resetAll();

pipe4.resetAll();

pipe5.resetAll();

pipe1.setDelayLength(new_f);

pipe2.setDelayLength(new_f-0.5);

pipe3.setDelayLength(new_f+0.5);

pipe4.setDelayLength(new_f-0.667);

pipe5.setDelayLength(new_f-0.667);

}

}

Previously individual values were updated, here class member methods are instead.

The expression above contains two different methods, the first of which is the reset-

Pointers() method (ResetAll() for the clarinet). This method takes care of resetting the

Chapter 6. Implementing the Audio Unit Instrument plugin 30

values of the pointers to their initial values. The second method is the setDelayLength

method, its operation is described above.

6.4 Real-time parameter control

The development of an Audio Unit instrument from a Matlab script has a specific aim;

to make some audio DSP usable in real-time. The algorithms developed for the plugin

allow for many parameters to be changed in real-time. These can range from volume

coefficients, which allow the user to control the mix between flute and clarinet outputs,

to overblowing effects, created by varying the length of the jet delay line. In this section

a discussion of how parameters are controlled in an Audio Unit will be presented.

Near the top of the header file is an enumeration list which displays all of the available

parameters in the Audio Unit. In this case there are ten. Below the enumeration list the

parameters are given names and some key values are set:

static CFStringRef kParamName_VibratoAmount = CFSTR ("vibrato amount");

static const float kDefaultValue_VibratoAmount= 0;

static const float kMinimuValue_VibratoAmount = 0;

static const float kMaximumValue_VibratoAmount = 1;

The first line provides the user interface name for the vibrato depth parameter. The

second line provides a default value, the third line a minimum value and the fourth line

provides a maximum value. This declaration process is done for every parameter as

this information is used in the .cpp file.

The constructor method for EPMcocinst in the .cpp file instantiates the Audio Unit;
this includes setting up parameter names and values by using the information supplied
in the header file:

Globals()->SetParameter (kVibratoAmountParam, kDefaultValue_VibratoAmount);

This code sets up the Vibrato depth parameter, giving it the default value that was

defined in the header file.

Inside the GetParameterInfo method, The final step that is required to setup a parameter

on generic view is implemented. The developer defines

the parameter as follows:

case kVibratoAmountParam:

AUBase::FillInParameterName (outParameterInfo,kParamName_VibratoAmount , false);

Chapter 6. Implementing the Audio Unit Instrument plugin 31

outParameterInfo.unit = kAudioUnitParameterUnit_Generic;

outParameterInfo.minValue = kMinimuValue_VibratoAmount;

outParameterInfo.maxValue = kMaximumValue_VibratoAmount;

outParameterInfo.defaultValue = kDefaultValue_VibratoAmount;

break;

Each parameter is defined inside a switch case statement. The case for each parameter

is invoked when the view needs information for the parameter it defines. As it can be

seen from the code above the values defined in the header file are once again used to

define the parameters.

The HandleControlChanges method is used to connect sliders on a generic view (and
in fact a custom view as well) to MIDI controllers:

case 115 :

{

float scaledval2 = (((float)inValue/127.0));

Globals()->SetParameter (kVibratoAmountParam, scaledval2);

// event notify

AudioUnitParameter dParam = {0};

dParam.mAudioUnit = GetComponentInstance();

dParam.mParameterID = kVibratoAmountParam;

dParam.mScope = kAudioUnitScope_Global;

dParam.mElement = 0;

AUParameterListenerNotify(NULL, NULL, &dParam);

} break;

The code above allows a user to control the vibrato depth by using channel 115 of their

MIDI controller.

Inside the render method the parameter values are picked up in real-time. The follow-

ing code defines a variable of type double, which is updated with the output from the

vibrato depth parameter:

double vibCoef = GetGlobalParameter(kVibratoAmountParam);

All of the parameter values are picked up in the same way. They are then passed to

the flute class or the clarinet class, or indeed both. This is done through class member

methods, which take the parameter values as inputs. The double vibCoef is an input to

the tick methods of both the clarinet and the flute classes.

Chapter 6. Implementing the Audio Unit Instrument plugin 32

6.5 Lookup Table for Improved Tuning

In Chapter 4, it was shown that the use of linear interpolation improved the tuning of

both the clarinet and the flute physical models, by allowing fractional delay lengths to

be used. The improvements to the tuning of the clarinet were deemed sufficient, indeed

up to C5 the output of the model remains perceptually in tune, only varying slightly

off perfect pitch. However the flute model did not fair so well; on average only about

five or six consecutive notes were found to be perceptually in tune, any interval larger

than this was noticeably out of tune.

A high quality digital tuner was used to determine the accuracy of the flute model’s

tuning. Although some of the notes were found to be perfectly in tune others, a large

number were sharp or flat by up to fifteen cents. As it can be seen in

the length of the fractional delay is related to the value of dex, which is determined by:

dex = 0.125*(Fs/frequency);

As mentioned, the tuning of the model delivered by this expression was deemed unac-

ceptable. This is because the coefficient in the expression is the same across the entire

range of the flute model, however for optimal tuning individual coefficient values must

be specified for every note.

A lookup table composed of the individual coefficients from C3 to C6 was developed

in order to overcome the issue. For notes outside this range, the coefficient was set

to a default value of 0.128 as this was found to yield more accurate values than the

expected value of 0.125. The coefficients were calculated through a trial and error

process; increasing the value of the coefficient if the note was sharp and decreasing the

value of the coefficient if it was flat.

The MIDI note number associated with a given key press is determined by:

int noteplayed = (int)inParams.mPitch;

This appears inside the attack method and is used to determine the correct value of

the lookup table that must be used for a given key press. If the key that was pressed

returns a MIDI number n, then the correct coefficient for that key is located at index

n in the lookup table array. Once the correct value has been determined it is passed to

the equation for dex by using the variable tune coef :

Chapter 6. Implementing the Audio Unit Instrument plugin 33

tune_coef = lookArray[noteplayed];

And dex is redefined as:

dex = tune_coef*(Fs/frequency);

In the following chapter the final software implementation will be evaluated, including

the tuning and the subsequent improvements brought about by the lookup table.

Chapter 7

Evaluation of Results

After completion of the plugin, the code was tested and debugged in an effort to avoid

crashes. Once the final software was deemed stable, an extensive evaluation of its

sonic capacities was undergone. In this chapter the quality of the physical models will

be examined, followed by a presentation of some of the capacities of the monophonic

synthesiser as a whole.

7.1 The Clarinet Model

The Clarinet model developed for this project is a well known design. It has become

popular amongst audio DSP communities as it can be used as a very simple introduc-

tion to digital waveguide modelling techniques. The limitations of this model are also

well known, the most important being that although it aims to model the behaviour of

a clarinet, its output is far from an accurate representation of the actual instrument’s

tone.

The quality of the model was greatly improved by the addition of a one-pole averaging

low pass filter on the output. This filter does not adhere to the actual instrument, in fact

the physics dictates that a high pass filter should be placed here. Without the addition

of this low pass filter the model produces a very harsh tone, rich with harmonic content.

The output of a real clarinet contains only odd harmonics, giving it its distinct warm

and dark timbre. This is also the case for the model, however without the use of the

filter the harmonics were found to decay too slowly, resulting in a more square wave

output, hence the harshness of the tone.

34

Chapter 7. Evaluation of Results 35

The even harmonics in a real clarinet are virtually not present, resulting in the flattening

of the frequency curve between each odd harmonic peak. In the model, the troughs

between peaks are far more pronounced than in the real instrument frequency response,

as can be seen in figure 7.1. This may be a reason why the output of the model is so

different to that of the real instrument.

Figure 7.1: Frequency domain plot of the Clarinet model’s output at a fundamental

frequency of 200 Hertz. The graph displays the undesired troughs which occur around

the even harmonics.

Although the output of the model differs from the clarinet it is still very useful for

creating purely digital sounds. The harshness of the output is used to great effect when

coupled with unison, producing very wide, rich bass tones, particularly suited to dance

music and sound design tasks.

A positive result of this model is that the tuning issues due to the truncation of the delay

lines was largely solved by using linear interpolation. This is partly due to the fact that

the Clarinet has a fairly low register, and the tuning of DWG models is fairly good at

low frequencies, and gradually decreases in accuracy as the frequency is increased.

Chapter 7. Evaluation of Results 36

7.2 The Flute Model

The flute model developed here was based upon the clarinet model. Although the

clarinet model is fairly unconvincing, the output of the flute model is quite realistic,

within a certain frequency range. Interestingly the optimal frequency range of the

model is the same three octave band as a standard modern flute, however the real flute

can be played from C4 to C7, where as the optimal range for the model is from C3 to

C6. Pitches above C6 are accessible, up to around C8, however they are very shrill and

make for unpleasant listening. Pitches below C3 create a vast range of different sonic

outputs. Playing certain notes produces an output which sounds vaguely reminiscent

of a Didgeridoo, while many digital tones which do not resemble the output of any

real instrument can also be created. These tones can again be used to great effect for

developing wide soundscapes and effects.

As mentioned before varying the length of the jet delay line produces an overblowing

effect. Overblowing results in the pitch of the note being played, rapidly changing.

In the real instrument the simplest result of overblowing is a one octave jump of the

output pitch, however smaller interval pitch changes are also achievable. The model

allows for a very realistic imitation of the overblowing effect. However the model is

not perfect: although the output of the jet delay line is linearly interpolated, varying its

length in real-time produces an audible clicking sound.

Although the tone produced by the flute model is fairly good, before the development

of the lookup table, presented in section 6.5, its tuning characteristics were quite poor.

As it can be seen from figure 7.2, the accuracy achieved by using this method is very

good, most of the notes are perfectly in tune, while the rest remain within acceptable

margins of error, except for E4, A#5,C#5 and G5.

7.3 Sonic Evaluation

In this section some of the sounds the synthesiser is capable of producing will be

presented and a brief explanation of what is being heard will accompany each one.

The reader will be directed to listen to various examples, featured on the accompanying

CD.

Example 1 (ClarinetMelodyDry.wav): This file showcases the plugin being with the

Chapter 7. Evaluation of Results 37

clarinet model in use. The flute output is set to zero and one unison voice is selected.

No external effects are applied to the output of the plugin, making this the most natural

clarinet sound the plugin is capable of producing. As it can be heard, the result is not

very convincing.

Example2 (ClarinetMelodyWet.wav): The plugin is setup in the same manner as for

the previous sample and the same MIDI sequence is played. The addition of reverb

on the output greatly improves the quality of the sound, however the result remains

unrealistic.

Example 3 (MelodyFluteDry.wav): here the plugin is set with the clarinet output to

zero and the flute turned up, and the unison is set to 1. This is the most natural flute

sound the plugin is capable of making. A small amount of additional overtones, due to

feedback can be heard in the lower notes, but generally the result is quite realistic.

Example 4 (MelodyFluteWet.wav): The plugin settings are kept the same as above

and some reverb is added to the output of the plugin. This increases the quality of

the outpu,t as it rids the lower notes of the additional overtones, providing a clean and

realistic flute timbre.

Example 5 (OverblowingDry.wav): The plugin settings are maintained as above and

the overblow slider is varied to demonstrate the effects of overblowing. Particularly on

the lower note played towards the end, the clicking sound due to the change in delay

line length can be heard.

Example 6 (OverblowingWet.wav): Here the plugin setting are maintained and reverb

is added to the output. The addition of the reverb removes the clicking sound almost

entirely. Using the plugin like this allows the performer to play shakuhachi style flute,

the characteristic Japanese Buddhist meditation music.

Example 7 (Clarinet4Unison.wav): For this example the plugin uses the clarinet with

unison set to 4. The result is a very big sound capable of being used in electronic dance

music to great effect.

The remaining examples relate to the plugin when it is using the flute as the output.

they each illustrate what happens when a parameter slider is moved. FluteBreath.wav

demonstrates the breath pressure slider being brought from its minimum value to it

maximum. As with a real flute, when the breath pressure becomes very large the

output starts to go flat. FluteNoise.wav demonstrates the noise slider being ramped

Chapter 7. Evaluation of Results 38

up gradually. Eventually the output becomes white noise. This can be useful when

attempting to created atmospheric sounds. Finally VibratoFlute.wav demonstrates the

vibrato depth being varied as well as the rate.

Chapter 7. Evaluation of Results 39

Note MIDI(number Coefficient(Value Error((cents)
C3 48 0.128435 1
C#3 49 0.12865 1
D3 50 0.1284 0
D#3 51 0.12827 1
E3 52 0.1282 0
F3 53 0.1281 1
F#3 54 0.12822 1
G3 55 0.1283 0
G#3 56 0.1278 0
A4 57 0.1281 0
A#4 58 0.1276 0
B4 59 0.1281 0
C4 60 0.12775 0
C#4 61 0.12735 0
D4 62 0.127 0
D#4 63 0.126998 I3
E4 64 0.12707 I6
F4 65 0.1271 I3
F#4 66 0.12637 0
G4 67 0.1264 0
G#4 68 0.1266 0
A5 69 0.1269 0
A#5 70 0.126847 5
B5 71 0.1256 0
C5 72 0.1263 0
C#5 73 0.1257 I14
D5 74 0.1253 0
D#5 75 0.12645 0
E5 76 0.1245 0
F5 77 0.1261 0
F#5 78 0.1241 0
G5 79 0.12442 18
G#5 80 0.1241 0
A6 81 0.1218 0
A#6 82 0.1248 0
B6 83 0.1223 0
C6 84 0.1198 0

Figure 7.2: Tuning Lookup table developed for flute model and precision of output

notes

Chapter 8

Conclusions

A stable monophonic software synthesiser, which uses two physical models of wind

instrument as its basis for synthesis was developed. To achieve the final product, phys-

ical models were developed and tested in Matlab, before being ported to the C++ pro-

gramming language. Finally the C++ code was used to develop an Apple Audio Unit

plugin.

Although developing the physical models was non-trivial, the difficulty in this project

was encountered when developing the Audio Unit. As of yet, there is no textbook

covering the development of Audio Units, and very few online resources are available.

Apple provides some information on their developer website, however most of the

content refers to the development of Audio Unit effects, not instruments. This is also

the case for the definitive document,“The Audio Unit Programming Guide”, written by

Apple. Furthermore this document was written in 2007 and refers to the now obsolete

Xcode 3. Many of the steps involved in creating an Audio Unit have changed with the

arrival of Xcode 4, making this document less useful than it previously was. Eventually

the Audio Unit was developed and now performs as expected.

The models included are not perfect. The clarinet model in particular must be re-

examined. In general this model requires a lot more attention if it is to ever produce an

acceptable output. Specifically, the reflection filter and the non-linear element need to

be improved to reflect what occurs in the real instrument more accurately.

The flute model is far more successful than the clarinet, delivering outputs that are

very realistic, within a given frequency range. The use of a lookup table improved the

tuning a great deal. However, some notes remain noticeably out of tune. Developing a

40

Chapter 8. Conclusions 41

model which incorporates a more sophisticated interpolator could improve this issue.

The use of Lagrange Interpolation may be a possible avenue for the future.

The plugin which was developed is a modular synthesiser and it requires very little

processing power to run, as it is very computationally efficient. These two facts mean

that there is a vast scope for building upon the current product. Continuing to work

with delay lines to create hybrid instruments is a topic which will be explored. Delay

lines could also be used to implement delay effects and reverbs. The possibilities are

virtually endless!

Bibliography

[1] Stefan D Bilbao, Numerical sound synthesis: finite difference schemes and sim-
ulation in musical acoustics, Wiley, Chichester, 2009.

[2] Vesa Välimäki, Matti Karajalainen, Zoltan Janosy, and Unto K. Laine, “A real-
time DSP implementation of a flute model,” Int. Conf. Acoustics, Speech, and
Signal Processing, vol. 2, pp. 249 – 252, March 1992.

[3] Vesa Välimäki, Jyri Pakarinen, Cumhur Erkut, and Matti Karjalainen, “Discrete-
time modelling of musical instruments,” Reports on Progress in Physics, vol. 69,
no. 1, pp. 1–78, Jan 2006.

[4] Julius O Smith, 3rd, “Physical modelling using digital waveguides,” Computer
Music Journal, vol. 16, no. 4, pp. 74–91, Winter 1992.

[5] Julius O Smith, 3rd, “Musical applications of digital waveguides,” Stanford
University, May 1987.

[6] Julius O Smith, 3rd, “Applications of digital signal processing to audio and acous-
tics chapter (principles of digital waveguide models of musical instruments),” pp.
417 – 466, 1998.

[7] Richard Charles Boulanger and Victor Lazzarini, The audio programming book,
MIT Press, Cambridge, Mass., 2011.

[8] Neville H Fletcher and Thomas D. Rossing, The physics of musical instruments,
Springer-Verlag, New York, 1991.

[9] Patricio de la Cuadra, The Sound of Oscillating air jets: Physics, Modelling and
simulation in flute-like instrments, Ph.D. thesis, Stanford University, december
2005.

[10] Perry R Cook, Real sound synthesis for interactive applications, A K Peters,
Natick, Mass., 1st edition, 2002.

[11] Perry R Cook, “A meta-wind-instrument physical model, and a meta-controller
for real time performance control,” Proceedings of the ICMC, pp. 273–276, 1992.

[12] Craig J Webb, “University of Edinburgh MSc report,” March 2010.

[13] Apple Inc., “The audio unit programming guide.pdf,”
https://developer.apple.com/library/mac/documentation, 2007.

42

Bibliography 43

[14] Tobias Carpenter, “University of Edinburgh MSc report,” May 2012.

[15] Aaron Hillegass and Adam Preble, Cocoa programming for Mac OS X, Addison-
Wesley, Upper Saddle River, NJ, 4th ed edition, 2012.

[16] John Paul Mueller and Jeff Cogsweel, C++ for Dummies, Wiley Publishing,
Inc., 2nd edition, 2009.

[17] Marc-Pierre Verge, Aeroacoustics of Confined Jets, with Applications to the Phys-
ical Modelling of Recorder-Like Instruments, Ph.D. thesis, Technische Univer-
siteit Eindhoven, 1995.

[18] Vesa Välimäki, Rami Hänninen, and Matti Karjalainen, “An improved digital
waveguide model of a flute - implementation issues,” ICMC Proceedings, 1996.

[19] G. P. Scavone, An Acoustic analysis of single-reed woodwind instruments with
an emphasis on design and performance issues and digital waveguide modeling
techniques, Ph.D. thesis, Stanford University, 1997.

Appendix A

Matlab code

A.1 Clarinet Code

%--
% Toby Carpenter
%
% File name : Clarinet.m
% Description : Assignment 5.
% Implements reed blown cylinder model
% With linear interpolation
%--

clear; close all;

%--
% set global variables
Fs = 44100; % sample rate
f = 440; % frequency
d_plot = 0; % debug plots
attack = 40; % attack time, 1/attack seconds
sustain = 2; % sustain, seconds
release = 1000; % release time, 1/release seconds
sus_level = 0.5; % sustain level, >0.37 < 1

% calculated variables
dex= ((Fs/f)-0.7)/4;
delay = floor(dex); % delay time (samples)
frac = dex - delay;
sa = round(Fs/attack); % attack end sample
ss = round(Fs*sustain); % sustain end sample
rs = round(Fs/release); % release end sample

%--
% intialise vectors and additional variables

d1 = zeros(delay+1,1);
d1ptr1 = 1;
d1ptr2=2;

d2 = zeros(delay+1,1);
d2ptr1 = 1;
d2ptr2=2;

d3 = zeros(delay2+1,1);
d3ptr1 = 1;
d3ptr2=2;

44

Appendix A. Matlab code 45

delayedend = 0;

%--
% set envelope for pressure vector

% attack
pu(1:sa) = linspace(0,sus_level,sa);
% sustain
pu(sa+1:sa+1+ss) = sus_level;
% release
pu(sa+2+ss:sa+1+ss+rs) = linspace(sus_level,0,rs);

% set iterations as length of envelope
N = length(pu);
% initialise output vector
p = zeros(N,1);

N= length(pu);
n= 0:N-1;
u = 2*rand(1,N)-1; % definition of u, the white noise input

vib= sin(2*pi*4.5*n/Fs); % definition of sine wave for vibrato
mult = zeros(1,N);
mult2= zeros(1, N);

% loop to setup the mouth pressure.
for i = 1:N

mult(i)= u(i)*pu(i);
mult2(i) = vib(i)*pu(i);

real_in(i)= pu(i)+(0.0085*mult(i))+0.008*vib(i); % create the actual input

end

p_out= zeros(length(real_in),1); % initialise the output array

for i= 1:length(real_in)

intermediate= (1-frac)*d1(d1ptr2)+(d1(d1ptr1)*frac);
% set output vector at i
p_out(i)= (1-frac)*d2(d2ptr2)+(d2(d2ptr1)*frac);
% calculate pressure difference
delta_p= real_in(i)- p_out(i);
% calculate reflection coefficient (bound -1<r<1)
r= -0.1+(1.1*delta_p);

if (r <-1.0)
r = -1.0;

elseif (r>1.0)
r= 1.0;

end

% update delay line at mouthpiece
d1(d1ptr1)= real_in(i)-(r*delta_p);
% sum in the two travelling waves to form the output
p_out(i)= p_out(i)+ d1(d1ptr1);

% apply filter
delayendnext= intermediate;
d2(d2ptr1)= -0.48*(intermediate+delayedend);

% update values
delayedend = delayendnext;

Appendix A. Matlab code 46

% increment pointers
d1ptr1= d1ptr1+1;
d2ptr1= d2ptr1+1;
d1ptr2= d1ptr2+1;
d2ptr2= d2ptr2+1;

if (d1ptr1>delay+1) d1ptr1= 1; end
if (d2ptr1>delay+1) d2ptr1= 1; end
if (d1ptr2>delay+1) d1ptr2= 1; end
if (d2ptr2>delay+1) d2ptr2= 1; end

end

% plot output
y = 10*log10(abs(fft(p_out(1:44100))));
plot(y(1:1000))
grid

% play the output
soundsc(p_out,Fs);

A.2 Flute Code

%--
% Toby Carpenter
%
% File name : Flute.m
% Description : Assignment 5.
% Implements reed blown cylinder model
% With linear interpolation
%--

clear; close all;

%--
% set global variables
Fs = 44100; % sample rate
f = 440; % frequency
d_plot = 0; % debug plots
attack = 40; % attack time, 1/attack seconds
sustain = 2; % sustain, seconds
release = 1000; % release time, 1/release seconds
sus_level = 0.5; % sustain level, >0.37 < 1

% calculated variables
dex = 0.2381*(Fs/f);
delay = floor(dex); % delay time (samples)
delay2 = floor(0.5*delay);
frac = dex - delay;
sa = round(Fs/attack); % attack end sample
ss = round(Fs*sustain); % sustain end sample
rs = round(Fs/release); % release end sample

%--
% intialise vectors and additional variables

d1 = zeros(delay+1,1);
d1ptr1 = 1;
d1ptr2=2;

d2 = zeros(delay+1,1);

Appendix A. Matlab code 47

d2ptr1 = 1;
d2ptr2=2;

d3 = zeros(delay2+1,1);
d3ptr1 = 1;
d3ptr2=2;

delayedend = 0;
RFiltLast=0;
outLast=0;
%--
% set envelope for pressure vector

% attack
pu(1:sa) = linspace(0,sus_level,sa);
% sustain
pu(sa+1:sa+1+ss) = sus_level;
% release
pu(sa+2+ss:sa+1+ss+rs) = linspace(sus_level,0,rs);

% set iterations as length of envelope
N = length(pu);
% initialise output vector
p = zeros(N,1);

N= length(pu);
n= 0:N-1;
u = 2*rand(1,N)-1; % definition of u, the white noise input

vib= sin(2*pi*4.5*n/Fs); % definition of sine wave for vibrato
mult = zeros(1,N);
mult2= zeros(1, N);

for i = 1:N

mult(i)= u(i)*pu(i);
mult2(i) = vib(i)*pu(i);

real_in(i)= pu(i)+(0.0085*mult(i))+0.008*vib(i); % create the actual input

end

%--
% main calculation loop

for i = 1:N
% set ouput vector at i
d1out = (1-0.5*frac)*d1(d1ptr2)+(d1(d1ptr1)*0.5*frac);
d2out = (1-0.5*frac)*d2(d2ptr2)+(d2(d2ptr1)*0.5*frac);
d3out = (1-0.5*frac)*d3(d3ptr2)+(d3(d3ptr1)*0.5*frac);
% calc pressure difference
pdelta = real_in(i) + 0.7*d2(d2ptr1);
d3(d3ptr1) = pdelta;

% apply sigmoid-like non linear effect (bound -1<r<1)...
r = d3out-d3out*d3out*d3out;
if (r<-1) r=-1; end
if (r>1) r=1; end
% update delay line at mouthpiece
d1(d1ptr1) = r + 0.8*d2out;
% increment output vector

% apply filter
delayendnext = d1out;
d2(d2ptr1) = -0.4995*(d1out + delayedend);
% update values
delayedend = delayendnext;

Appendix A. Matlab code 48

p(i)= d2(d2ptr1);

% check if greater than delay... + 1 interp !!
d1ptr1 = d1ptr1 + 1; if d1ptr1>delay+1 d1ptr1 = 1; end
d1ptr2 = d1ptr2 + 1; if d1ptr2>delay+1 d1ptr2 = 1; end
d2ptr1 = d2ptr1 + 1; if d2ptr1>delay+1 d2ptr1 = 1; end
d2ptr2 = d2ptr2 + 1; if d2ptr2>delay+1 d2ptr2 = 1; end
d3ptr1 = d3ptr1 + 1; if d3ptr1>floor(delay2)+1 d3ptr1 = 1; end
d3ptr2 = d3ptr2 + 1; if d3ptr2>floor(delay2)+1 d3ptr2 = 1; end

end

%--

% plot output
%if d_plot

plot(linspace(0,N/Fs,length(p)),p)
title(’Ouput waveform’)
xlabel(’Time (s)’)
ylabel(’Amplitude’)

figure(2)
y = 10*log10(abs(fft(p(1:44100))));
plot(y(1:1500))
grid

%end
%--

Appendix B

Audio Unit code

B.1 Clarinet Class

//
// Clarinetclass2.h
// Clarinetclass2
//
// Created by Tobias Carpenter on 25/07/2012.
// Copyright (c) 2012 TCP. All rights reserved.
//

#ifndef Clarinetclass2_Clarinetclass2_h
#define Clarinetclass2_Clarinetclass2_h
#include <math.h>

class Clarinetclass2 {

public:

double Fs;
double dex;
int delay;
double frac;
double d1out;
int d1ptr1, d1ptr2;
double *d1, *d2;
double p;
int d2ptr1, d2ptr2;
double delta_p;
double r;
double delayendnext;
double delayedend;
double breathp;
double phase;
double PastFilt;
double a, b , Freq;

Clarinetclass2() {

size_t pr_siz = sizeof(double);
d1 = (double *)calloc(1000,pr_siz);
d2 = (double *)calloc(1000,pr_siz);
Fs = 0;
dex = 0;
delay = 0;
frac = 0;
d1out = 0;

49

Appendix B. Audio Unit code 50

d1ptr1 = 0;
d1ptr2 = 1;
p = 0;
d2ptr1 = 0;
d2ptr2 = 1;
delta_p = 0;
r = 0;
delayendnext = 0;
delayedend = 0;
breathp = 0;
phase = 0;
PastFilt =0;
Freq= 300;
b = sqrt((2-cos(2*M_PI*Freq/44100))*(2-cos(2*M_PI*Freq/44100))-1) -2+ cos(2*M_PI*Freq/44100);
a = 1+b;

}

˜Clarinetclass2(){

free (d1);
free (d2);

}

void setDelayLength (double frequency2);

void resetAll ();

float tick(float breathp, double noiseCoef, double vibDepth, double vibFreq);
};

void Clarinetclass2:: setDelayLength(double frequency2) {

dex = ((44100/frequency2)-0.7)/4;
delay = floor(dex);
frac = dex - delay;

}

void Clarinetclass2:: resetAll() {

d1out = 0;
d1ptr1 = 0;
d1ptr2 = 1;
d2ptr1 = 0;
d2ptr2 = 1;
delayendnext = 0;
delayedend = 0;

}

float Clarinetclass2 ::tick(float breathp, double noiseCoef, double vibDepth, double vibFreq) {

double noise = ((rand() % 10000)/10001.0)*2.0-1.0;
//generate white noise by using the rand() function

double vibSine = 0.1*sin(phase);
phase+= vibFreq*M_PI*2/44100;
if (phase>M_PI*2) phase-= M_PI*2;
double real_breath = (0.6*breathp)+0.4;

double mult = real_breath*noise;
double mult2= real_breath*vibSine;

Appendix B. Audio Unit code 51

double actual_breath = real_breath+ noiseCoef*mult + vibDepth*mult2;

d1out = (1-frac)*d1[d1ptr2]+frac*d1[d1ptr1];

p = (1-frac)*d2[d2ptr2]+frac*d2[d2ptr1];

delta_p = actual_breath - p;

r = -0.1+(1.1*delta_p);
if(r<-1.0) r = -1.0;
else if(r>1.0) r = 1.0;

d1[d1ptr1]= actual_breath - (r*delta_p);

p += d1[d1ptr1];
p = a*p - b*PastFilt;
PastFilt = p;

delayendnext = d1out;

d2[d2ptr1]= -0.48*(d1out+delayedend);

delayedend=delayendnext;

d1ptr1++;
d1ptr2++;
d2ptr1++;
d2ptr2++;

if(d1ptr1>delay) d1ptr1=0;
if(d1ptr2>delay) d1ptr2=0;
if(d2ptr1>delay) d2ptr1=0;
if(d2ptr2>delay) d2ptr2=0;

return (float)p;
}

#endif

B.2 Flute Class

//
// fluteClass.h
// fluteClass
//
// Created by Tobias Carpenter on 27/07/2012.
// Copyright (c) 2012 TCP. All rights reserved.
//

#ifndef fluteClass_fluteClass_h
#define fluteClass_fluteClass_h
#include <math.h>

class Fluteclass {

public:

double Fs;
double dex, dex2;
int delay, delay2;
double frac, frac2;
double d1out, d2out, d3out;

Appendix B. Audio Unit code 52

double *d1, *d2, *d3;
int *lookUpArray;
double p;
double delta_p;
double r;
double jet_out;
double delayendnext;
double delayedend;
double phase;

int d1ptr1, d1ptr2;
int d2ptr1, d2ptr2;
int d3ptr1, d3ptr2;

int i;

Fluteclass () {

size_t pr_siz = sizeof(double);
d1 = (double *)calloc(1000,pr_siz);
d2 = (double *)calloc(1000,pr_siz);
d3 = (double *)calloc(1000,pr_siz);

// initialise look up array to be of size 150 and set all values to 0;

size_t pr_siz1 = sizeof(int);
lookUpArray = (int *)calloc(150,pr_siz1);
for (i=0; i<150; i++) {

lookUpArray[i]= 0.2323;
}

Fs = 0;
dex = 0;
dex2 = 0;
delay = 0;
delay2 = 0;
frac = 0;
frac2 = 0;
d1out = 0;
d2out = 0;
d3out = 0;
p = 0;
d1ptr1 = 0;
d1ptr2 = 1;
d2ptr1 = 0;
d2ptr2 = 1;
d3ptr1 = 0;
d3ptr2 = 1;
delta_p = 0;
r = 0;
delayendnext = 0;
delayedend = 0;
jet_out = 0;
phase = 0;

}

˜Fluteclass (){

free(d1);
free(d2);
free(d3);

}

void setDelayLength (double frequency, double tuneCoef);

void resetPointers ();

float tick(float breathp, double noiseCoef, double vibDepth, double vibFreq, double Dlength);

Appendix B. Audio Unit code 53

};
void Fluteclass:: setDelayLength (double frequency, double tuneCoef){

Fs = 44100;

dex = tuneCoef*(Fs/frequency);
delay = floor(dex);
frac = dex - delay;
dex2 = tuneCoef*(Fs/frequency);
delay2 = floor(dex2);
frac2 = dex - delay;

}

void Fluteclass:: resetPointers () {

d1ptr1 = 0;
d1ptr2 = 1;
d2ptr1 = 0;
d2ptr2 = 1;
d3ptr1 = 0;
d3ptr2 = 1;

}

float Fluteclass:: tick(float breathp, double noiseCoef, double vibDepth, double vibFreq, double Dlength){

double noise = ((rand() % 10000)/10001.0)*2.0-1.0;
//generate white noise by using the rand() function

double vibSine = 0.1*sin(phase);
phase+= vibFreq*M_PI*2/44100; // set vibFreq to 5
if (phase>M_PI*2) phase-= M_PI*2;

double actual_breath = (-0.3*breathp)+0.6;
double mult = actual_breath*noise;
double mult2= actual_breath*vibSine;
double real_in = actual_breath + noiseCoef*mult + vibDepth*mult2;

double length2 = (0.5+(((Dlength*127)/149.4118)))*delay2;
double intLenght2 = floor(length2);
double fraction2 = length2 - intLenght2;

d1out= (1-frac)*d1[d1ptr2]+frac*d1[d1ptr1];
d2out= (1-frac)*d2[d2ptr2]+frac*d2[d2ptr1];
d3out= (1-fraction2)*d3[d3ptr2]+fraction2*d3[d3ptr1];
// define the outputs of the delay lines to be linearly interpolated

delta_p = real_in + 0.7*d2[d2ptr1];
d3[d3ptr1]= delta_p;

jet_out = d3out - d3out*d3out*d3out;
if(jet_out<-1.0) jet_out = -1.0;
else if (jet_out>1.0) jet_out =1.0;
d1[d1ptr1] = jet_out+0.8*d2out;

p = d2[d2ptr1];

delayendnext = d1out;
d2[d2ptr1] = -0.4995*(d1out+ delayedend);
delayedend = delayendnext;

//increment and bind the pointers
d1ptr1++;
d1ptr2++;
d2ptr1++;
d2ptr2++;
d3ptr1++;

Appendix B. Audio Unit code 54

d3ptr2++;

if (d1ptr1>delay) d1ptr1=0;
if (d1ptr2>delay) d1ptr2=0;
if (d2ptr1>delay) d2ptr1=0;
if (d2ptr2>delay) d2ptr2=0;

if (d3ptr1>intLenght2) d3ptr1=0;
if (d3ptr2>intLenght2) d3ptr2=0;

return (float)p;

return (float)p;
}
#endif

B.3 TestNote Code

struct TestNote : public SynthNote
{

// Constructor
TestNote(){

amp = 0.0;
use_amp = -0.000001;

srand(time(NULL));

//Look up table for exact coefficent for calculation of dex, exact values calculated from C3 to C6
int i;
size_t pr_siz = sizeof(double);
lookArray = (double *)calloc(150,pr_siz);

for (i= 0; i<150; i++) {
lookArray[i] = 0.128;

}
lookArray[48] = 0.128435;
lookArray[49] = 0.12865;
lookArray[50] = 0.1284;
lookArray[51] = 0.12827;
lookArray[52] = 0.1282;
lookArray[53] = 0.1281;
lookArray[54] = 0.12822;
lookArray[55] = 0.1283;
lookArray[56] = 0.1278;
lookArray[57] = 0.1281;
lookArray[58] = 0.1276;
lookArray[59] = 0.1281;
lookArray[60] = 0.12775;
lookArray[61] = 0.12735;
lookArray[62] = 0.127;
lookArray[63] = 0.126998;
lookArray[64] = 0.12707;
lookArray[65] = 0.12671;
lookArray[66] = 0.12637;
lookArray[67] = 0.1264;
lookArray[68] = 0.1266;
lookArray[69] = 0.1269;
lookArray[70] = 0.126847;
lookArray[71] = 0.1256;
lookArray[72] = 0.1263;
lookArray[73] = 0.125707;
lookArray[74] = 0.1253;
lookArray[75] = 0.12645;
lookArray[76] = 0.1245;
lookArray[77] = 0.1261;

Appendix B. Audio Unit code 55

lookArray[78] = 0.1241;
lookArray[79] = 0.12442;
lookArray[80] = 0.1241;
lookArray[81] = 0.1218;
lookArray[82] = 0.1248;
lookArray[83] = 0.1223;
lookArray[84] = 0.1198;

}

// Destructor
virtual ˜TestNote() {

//free(lookArray);

}

virtual bool Attack(const MusicDeviceNoteParams &inParams)
{

amp = 0.0;
Fs = SampleRate();

up_slope = max_amp / (0.05 * Fs);
dn_slope = -max_amp / (0.05 * Fs);

new_f = Frequency();
//phase=0;

loaded = FALSE;
if (IsSounding()) fast_cut = TRUE;
else fast_cut = FALSE;

//----------------------
//look up table for flute tuning coefficients
int noteplayed = (int)inParams.mPitch;// get midi note
new_coef = lookArray[noteplayed];

return true;
}

virtual Float32 Amplitude() { return amp; } // used for finding quietest note for voice stealing.
virtual OSStatus Render(UInt64 inAbsoluteSampleFrame, UInt32 inNumFrames, AudioBufferList** inBufferList,
UInt32 inOutBusCount);

double up_slope, dn_slope, amp;
// stored state parameters
double use_amp, Fs, new_f, new_coef;
bool loaded, fast_cut;
Fluteclass flu1, flu2, flu3, flu4, flu5, flu6, flu7;
Clarinetclass2 pipe1, pipe2, pipe3, pipe4, pipe5, pipe6, pipe7;
BiQuadClass filter;
double *lookArray;

};

B.4 Render Method Code

//˜˜
// EPMcocinst::Render
//˜˜
OSStatus TestNote::Render(UInt64 inAbsoluteSampleFrame, UInt32 inNumFrames, AudioBufferList** inBufferList, UInt32 inOutBusCount)
{

float *left, *right;

Appendix B. Audio Unit code 56

int numChans = inBufferList[0]->mNumberBuffers;
if (numChans > 2) return -1;

left = (float*)inBufferList[0]->mBuffers[0].mData;
right = numChans == 2 ? (float*)inBufferList[0]->mBuffers[1].mData : 0;

float out;

// pick up parameter values from sliders:
// global parameters
float breathp = GetGlobalParameter(kBreathParam);
float claBreathp= breathp;
double vibCoef = GetGlobalParameter(kVibratoAmountParam);
double vibFreq = (GetGlobalParameter(kVibratoFrequency));
double mainLevel = (GetGlobalParameter(kMasterOutput));
//flute params
double dlength = (GetGlobalParameter(kDelay2Param));
double fluteNoise = (GetGlobalParameter(kFluteNoise));
double fluteLevel = (GetGlobalParameter(kFluteLevel));
// clarinet params
double claNoise = (GetGlobalParameter(kClarinetNoise));
double claLevel = (GetGlobalParameter(kClarinetLevel));
// unison param
float unisonF_number= (GetGlobalParameter(kUnisonFParam));

if (use_amp < 0.0) fast_cut = FALSE;

if (!fast_cut){

// Load new parameters if not done so...
if (!loaded)
{

use_amp = amp;
loaded = TRUE;
flu1.resetPointers();
flu2.resetPointers();
flu3.resetPointers();
flu4.resetPointers();
flu5.resetPointers();
flu6.resetPointers();
flu7.resetPointers();

flu1.setDelayLength(new_f, new_coef);
flu2.setDelayLength(new_f-0.5, new_coef);
flu3.setDelayLength(new_f+0.5, new_coef);
flu4.setDelayLength(new_f-0.667, new_coef);
flu5.setDelayLength(new_f+0.667, new_coef);
flu6.setDelayLength(new_f-1, new_coef);
flu7.setDelayLength(new_f+1, new_coef);
pipe1.resetAll();
pipe2.resetAll();
pipe3.resetAll();
pipe4.resetAll();
pipe5.resetAll();
pipe6.resetAll();
pipe7.resetAll();
pipe1.setDelayLength(new_f);
pipe2.setDelayLength(new_f-0.5);
pipe3.setDelayLength(new_f+0.5);
pipe4.setDelayLength(new_f-0.667);
pipe5.setDelayLength(new_f-0.667);
pipe6.setDelayLength(new_f-1);
pipe7.setDelayLength(new_f+1);

}

Appendix B. Audio Unit code 57

}

if (GetState() == kNoteState_Attacked) {

for (UInt32 frame=0; frame<inNumFrames; ++frame)
{

if(fast_cut){ if(use_amp > 0.0) use_amp += dn_slope; }
else { if (use_amp < max_amp) use_amp += up_slope; }

if (unisonF_number==1) {
out = mainLevel*(fluteLevel*(flu1.tick(breathp, fluteNoise, vibCoef, vibFreq, dlength))+
claLevel*(pipe1.tick(claBreathp, claNoise, vibCoef, vibFreq)));

}

else if (unisonF_number==2) {
out = 0.56*mainLevel*(fluteLevel*(flu2.tick(breathp, fluteNoise, vibCoef, vibFreq, dlength)+
flu3.tick(breathp, fluteNoise, vibCoef, vibFreq, dlength))+
claLevel*(pipe2.tick(claBreathp, claNoise, vibCoef, vibFreq)+
pipe3.tick(claBreathp, claNoise, vibCoef, vibFreq)));

}
else if (unisonF_number==3) {

out = 0.46*mainLevel*(fluteLevel*(flu1.tick(breathp, fluteNoise, vibCoef, vibFreq, dlength)+
flu4.tick(breathp, fluteNoise, vibCoef, vibFreq, dlength)+
flu5.tick(breathp, fluteNoise, vibCoef, vibFreq, dlength)) +
claLevel*(pipe1.tick(claBreathp, claNoise, vibCoef, vibFreq)+
pipe4.tick(claBreathp, claNoise, vibCoef, vibFreq)+
pipe5.tick(claBreathp, claNoise, vibCoef, vibFreq)));

}
else if (unisonF_number==4) {

out = 0.4*mainLevel*(fluteLevel*(flu2.tick(breathp, fluteNoise, vibCoef, vibFreq, dlength)+
flu3.tick(breathp, fluteNoise, vibCoef, vibFreq, dlength)+
flu4.tick(breathp, fluteNoise, vibCoef, vibFreq, dlength)+
flu5.tick(breathp, fluteNoise, vibCoef, vibFreq, dlength)) +
claLevel*(pipe2.tick(claBreathp, claNoise, vibCoef, vibFreq)+
pipe4.tick(claBreathp, claNoise, vibCoef, vibFreq)+
pipe5.tick(claBreathp, claNoise, vibCoef, vibFreq)+
pipe4.tick(claBreathp, claNoise, vibCoef, vibFreq)));

}

left[frame] = out * use_amp;
if (right) right[frame] = out * use_amp;

}

}

else if ((GetState() == kNoteState_Released))
{

UInt32 endFrame = 0xFFFFFFFF;
for (UInt32 frame=0; frame<inNumFrames; ++frame)
{
if (use_amp > 0.0) use_amp += dn_slope;

else if (endFrame == 0xFFFFFFFF) endFrame = frame;

if (unisonF_number==1) {
out = mainLevel*(fluteLevel*(flu1.tick(breathp, fluteNoise, vibCoef, vibFreq, dlength))+
claLevel*(pipe1.tick(claBreathp, claNoise, vibCoef, vibFreq)));

}

Appendix B. Audio Unit code 58

else if (unisonF_number==2) {
out = 0.56*mainLevel*(fluteLevel*(flu2.tick(breathp, fluteNoise, vibCoef, vibFreq, dlength)+
flu3.tick(breathp, fluteNoise, vibCoef, vibFreq, dlength))+
claLevel*(pipe2.tick(claBreathp, claNoise, vibCoef, vibFreq)+
pipe3.tick(claBreathp, claNoise, vibCoef, vibFreq)));

}
else if (unisonF_number==3) {

out = 0.46*mainLevel*(fluteLevel*(flu1.tick(breathp, fluteNoise, vibCoef, vibFreq, dlength)+
flu4.tick(breathp, fluteNoise, vibCoef, vibFreq, dlength)+
flu5.tick(breathp, fluteNoise, vibCoef, vibFreq, dlength)) +
claLevel*(pipe1.tick(claBreathp, claNoise, vibCoef, vibFreq)+
pipe4.tick(claBreathp, claNoise, vibCoef, vibFreq)+
pipe5.tick(claBreathp, claNoise, vibCoef, vibFreq)));

}
else if (unisonF_number==4) {

out = 0.4*mainLevel*(fluteLevel*(flu2.tick(breathp, fluteNoise, vibCoef, vibFreq, dlength)+
flu3.tick(breathp, fluteNoise, vibCoef, vibFreq, dlength)+
flu4.tick(breathp, fluteNoise, vibCoef, vibFreq, dlength)+
flu5.tick(breathp, fluteNoise, vibCoef, vibFreq, dlength)) +
claLevel*(pipe2.tick(claBreathp, claNoise, vibCoef, vibFreq)+
pipe4.tick(claBreathp, claNoise, vibCoef, vibFreq)+
pipe5.tick(claBreathp, claNoise, vibCoef, vibFreq)+
pipe4.tick(claBreathp, claNoise, vibCoef, vibFreq)));

}

left[frame] = out * use_amp;
if (right) right[frame] = out * use_amp;

}
if (endFrame != 0xFFFFFFFF) NoteEnded(endFrame);

}

return noErr;
}

	Introduction
	Digital Waveguide Theory
	Digital Waveguides and Delay Lines
	Derivation of the DWG principle

	Implementing Digital Waveguides in Matlab
	Basic Delay Line
	Interpolating for tuning

	Developing the DWG model
	The Clarinet
	The Flute

	Audio Units
	Core Audio and Audio Units
	The Core Audio SDK

	Implementing the Audio Unit Instrument plugin
	Initial testing of Matlab Code
	Basic code in AU Template
	C++ classes for Unison
	Real-time parameter control
	Lookup Table for Improved Tuning

	Evaluation of Results
	The Clarinet Model
	The Flute Model
	Sonic Evaluation

	Conclusions
	Bibliography
	Matlab code
	Clarinet Code
	Flute Code

	Audio Unit code
	Clarinet Class
	Flute Class
	TestNote Code
	 Render Method Code

