Computational Impedance
Generation and Bore
Optimisation for Matlab

Craig Meek

MSc Acoustics & Music Technology
University of Edinburgh
s0791739
Summer 2012



Abstract

This project focuses on the combination of input impedance generation and opti-
misation techniques to construct code for Matlab that will produce an impedance
curve for a pre-specified bore profile, or suggest a bore profile to fit a pre-specified
impedance curve. These two separate but related problems will be referred to as
‘impedance generation’ and ‘bore optimisation’ respectively.

Impedance generation is achieved by modelling wave propagation using fi-
nite different schemes and devising a method for reconstructing brass instrument
shapes. Bore optimisation is performed using the Rosenbrock method along with
a suitably defined objective function to rate how closely designs match the target.

The code for both problems is subject to a series of tests to determine accuracy
and performance. Following this, improvements are made and suggestions put
forward for future work. Finally, applications of the system are outlined in each

case.
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Introduction

Motivation

The study and computational modelling of the acoustical behaviour in an instru-
ment bore has become a well-established undertaking in the previous two decades,
with a notable motivating factor being to provide assistance in the construction
of quality musical instruments. Studying the impedance from a pre-specified bore
gives useful indications of the pitch, stability and timbre of sounded notes. The
reverse problem - finding a bore profile to fit a pre-specified set of impedance
values - allows the user to set a desired output and request a suitable bore recon-
struction.

Combining these two methods can provide a useful tool for brass instrument
design and construction. While crafting a top class instrument is regarded as an
art in itself learnt over many years of practice, instrument modelling and bore
reconstruction can still be a valuable supplement in the design process. Many
different models can be tested and optimised computationally, saving the need
for construction of time and money consuming prototypes.

Many authors have produced work at least partly driven by this motivation,
including Braden ([1, 2]), Norland ([3, 4]),Kausel ([5]) and Amir ([6]). Conse-
quently, the source codes are not always widely available, are written in different
coding languages, or are focused on running for longer periods of time in order
to achieve pinpoint accuracy.

One of the main motivations of this project is therefore not necessarily to
create a meticulously accurate tool for manufacturers, but instead to build a
relatively more accessible and user-friendly impedance analysis and optimisa-
tion package. It is intended to be geared towards students, in the mould of the
‘Fourier’ and ‘Levels’ Matlab programmes ([31]) developed at the University of
Edinburgh to provide an easy system to analyse data and enhance learning. Fur-
ther motivation comes from the author’s study of both finite difference schemes

and optimisation techniques throughout the year, accompanied by the desire to



Computational Impedance Generation and Bore Optimisation for Matlab 2

apply the acquired knowledge on a larger and practical scale.

Project Aims

Following the previous discussion, it is necessary to provide a number of aims of

this project:

To develop Matlab code to find the impedance curve for a specified bore

profile, and to optimise a bore profile for a specified impedance curve.

To rigourously test each case and review accuracy and efficiency.

To suggest improvements, further work and applications for each case.

To have the final code accessible so that it may be built on and improved

by anyone at a later date.

Summary

This project is split into four distinct sections, with the first half covering the
forward problem and the second half covering the reverse problem. Chapter 1
will cover the theory of wave propagation in tubes, leading the way to the intro-
duction of Webster’s equation, finite difference schemes and the construction of
an ‘impedance generator’. In Chapter 2, the computational model is put through
a series of rigorous accuracy tests. The results are then analysed and suggestions
are made for improvements. Following this, some practical uses of the system are
outlined. Chapter 3 introduces optimisation techniques to deal with the ‘reverse
problem’; and covers the theory of the specific algorithm used with the ‘bore op-
timiser’. In Chapter 4, the optimiser is put through a series of tests and the
results discussed. Challenges in implementation are highlighted, improvements
are suggested and any possible future work is detailed. The full code is included

digitally, and a hard copy of the main scripts is presented in the appendix.



Chapter 1
Impedance (Generation

As already mentioned, studying the input impedance enables us to go a long
way in predicting the particular sound of an instrument in terms of intonation,
stability and to a lesser extent, timbre. Constructing efficient and accurate code
that returns the impedance from a pre-specified bore will also be key to later
implementing the reverse problem in Chapter 3, where a constant stream of bore

designs need to be tested and their impedance values rated against a target.

1.1 Initial Discussion and Theory

Before going any further, it is worth briefly refreshing the theory of acoustical
behaviour in tubes. More specifically, the theory in this project is based on that
of lip-driven brass instruments.

One main characteristic of brass instruments is their ‘cup-shaped’ mouth-
pieces, necessitating the use of a lip-reed mechanism. In a simplified sense, notes
are sounded by interaction between lip vibrations and the resonances of the air
column in the main instrument bore. The column may resonate at several differ-
ent frequencies for any one fingering or valve configuration, and it is the spacing,
width and magnitude that govern the overall properties of the emitted sound.
These resonances correspond to the natural modes of vibration of the air column
contained in the tube.l 9]

To produce a note, the player sets their lips to vibrate at a particular fre-
quency and injects an oscillatory flow into the main bore, which induces vibra-
tions into the air column. These vibrations build up, causing the lips to react
to the increasing pressure fluctuations and ‘lock’ into a stable vibration with the
air column, producing standing waves. It is the resonances feeding off the energy

of the air flow and powering other modes that most influences what note will be
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sounded.l" 7 Given the correct frequency and phase relationships, several modes
can feed off the components of the injected air flow to produce a strong resultant
note. 8!

Essentially, resonances in the air column that form an approximate harmonic
series can be used to set up a stable, cooperative regime of oscillation. The more
harmonically related peaks that support a fundamental, the more stable and easy
to play the sounded note will be. In reality, the resonant body of brass instru-
ments causes these ideal modes of vibration to deviate, producing overtones and
a degree of inharmonicity. This is counteracted by ‘mode locking’, which causes
the overtones to lock precisely onto integer multiples of the fundamental pitch,
and hence have the desired phase relationship despite being slightly different to
the natural resonances points of the instrument.l”’ Taking this all into account,
it follows that in searching for patterns of harmonically related peaks, one can

predict what notes a brass instrument may play.

1.2 Input Impedance

To build an impedance generator, it is of course necessary to first define input
impedance. As the chapter title suggests, it is a key component in this part of the
project. Input impedance, denoted as Z, is a frequency dependent value defined

as follows:[7 9

Z=-3 (1.1)
where
p = Acoustic Pressure, Pa

v = Velocity, m/s

S = Surface Area, m?

The quantity vS is commonly known as Volume Velocity or Acoustic Volume

Flow. The units of Z are hence mP?,‘;s = —%*, known as an Acoustic Ohm. Readings

are taken at a point close the mouthpiece.!’)

Acoustic impedance measures the pressure level generated by some air vibra-
tion at a particular frequency.l'”! Informally, it can be described as an ‘acoustical
fingerprint’, as using the theory from section 1.1 allows much information about

the behaviour of an instrument to be extracted from its impedance plot. Peaks
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on the plots correspond to resonances, the larger the magnitude naturally imply-
ing a stronger response. As already highlighted, many large harmonically related
peaks will sustain a cooperative regime of oscillation and result in a stable tone
being sounded. On a side note, the excitation frequency of the lips need not
correspond with a large impedance peak; it is the extent to which a particular
frequency can combine with other strong resonances that determines the overall
quality and ease of sounding a particular note. This is a common feature of brass

instruments. ']

1.3 Webster’s Equation

As the goal of this section is to create a computational impedance generator, it
will be essential to model wave propagation in a tube, from which the relevant
quantities may be used to calculate impedance. In tubes, the length scale in
one coordinate is significantly larger than that in the other coordinates, allowing
the dynamics of the model to be reduced to one dimension. In other words, we
are assuming that no transverse modes exist and hence only working along the
z-axis.['¥ The equation to be used is called Webster’s equation. The derivation
will not be covered in this project, but a thorough description can be found in
[1], or from the original paper [14]. Given a discretized bore profile, Webster’s

equation is defined as follows:

where

U = Velocity Potential

S(z) = Cross sectional area of tube at z

v = ¢/L (speed of sound in air/length of tube)

This is a scaled form of Webster’s equation, where the z coordinates have
been normalised to unit length and the cross sectional area scaled by a reference
surface area, usually taken to be the left extremity of the tube. The pressure and

volume velocity can be derived from ¥ as follows:

p="Yy,u=-SY, (1.3)

The equation as stated above assumes that there are no viscothermal losses.

This will be addressed later on, but for the time being we will work with the
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lossless version to maintain clarity in how it is modelled computationally. Other
assumptions include that the instrument bore has no curvature, the cross section

is exactly circular and the wave propagation is strictly planar.

1.3.1 Boundary Conditions

To ensure the computational model works effectively, well-defined boundary con-
ditions are required. The left end of the tube is effectively treated as being closed
and coupled to an excitation mechanism to be added later. A typical zero velocity
Neumann condition is sufficient - it can be expressed as W, (0,t) = 0. Since the
right end of the tube will be radiating sound, it is possible to account for these
energy losses by using a Dirichlet type condition with loss terms. The form we
will use is U, (1,t) = - a; ¥, - ayV¥(1,t)."2 The two o terms are dependent on

the tube parameters. Suitable values are outlined in [12] and [15].

1.4 Modelling Impedance

Instead of modelling using the more common transmission line approach, this
project uses finite difference methods. This is in contrast to much of the other
literature that deals with computational impedance generation, possibly with
the exception of [4] where a mix of the two methods is used. Finite difference
methods offer potential advantages over digital waveguides in various areas. The
main advantage is that they provide a clearer insight into the physical workings of
a system. Waveguides can be more successful in producing synthesised sound, but
since the overriding motivation is to study acoustical behaviour, this declines in
importance. Historically, use of numerical methods has come at a computational
cost, but the speed and quality of modern computers means that this is becoming
much less of a concern.

Another advantage (or at least, difference) that has emerged during applica-
tion of finite difference methods is that they negate the use of sectional analysis
- that is, while the specified bore shape may be defined in terms of many sec-
tions, the final impedance calculations treat it as a whole. This is in contrast to
waveguide methods, that calculate impedances for a series of transmission ma-
tricies corresponding to each individual section of the horn. It could be argued
that once the fundamentals of finite differences are understood, it can become a
more straightforward method of deriving impedance. If nothing else, taking this
approach is simply a fresh way of doing things, and could throw up interesting

new opportunities.
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1.4.1 Finite Difference Schemes

A finite difference scheme is a numerical method that attempts to approximate the
overall solution of partial differential equations by approximating the derivatives
using finite differences. To elaborate, a solution space is discretized into a finite
grid of spacial parts, with time discretized in a similar manner. Derivatives are
approximated by taking differences between nearby grid points, and the overall
numerical solution advanced by the use of recursive methods. The finite difference
methods used in this project are based in the time domain.

The introduction of some basic notation will be helpful in keeping track of the
workings of the scheme when it is presented. A more comprehensive glossary of
terms is contained in Appendix II, to which any readers less familiar with these
techniques are directed. Remembering that the solution space is now a discrete
grid, we represent a solution to 1.2 at spacial point [ and temporal point n as
U7, Derivatives are calculated using a selection of templates, with ¢ representing
a spacial or temporal operator. Most commonly used are forward, backward and
central templates. Equation 1.4 below demonstrates the forward case, where h is
a spacial step.!

D = ey = e -y = T (1.4

The backward and central cases are derived similarly using dx_ ¥} and (dx4 —
dx_ )W} respectively. Double derivatives are approximated by combining the for-
ward and backward templates. Temporal derivatives are dealt with in a similar

fashion, using a time step k.['

1.4.2 Scheme for Webster’s Equation

Recall equation 1.2:

SV, =~*(SV,), (1.5)

A suggested finite difference scheme, set out in [12], is:

(510 ¥ = 7004 (11— 5 ) (02— W) (1.6)

where p, is an averaging operator and [S] = p,,S is a second order approx-

imation to the continuous form of S. After operator expansion, some rearrange-

ITo keep the notation simple, the part that is not being operated on will often be omitted.
In 1.4, the temporal part of ¥ is omitted since there are only spacial operators active.
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ment is required to enable the recursive relation. This involves expressing the
temporal update point in terms of everything else. After some algebraic work,

1.6 becomes:

Siv1+ S,
ﬁ e

P = )2 St +S1-1 5 (1 e Sit1+ 25+ S

W -1 2S], ) U=
(1.7)

where
A = vk/h, known as the Courant number.

Once the scheme has been run, the fourier transform of W is taken in order to

observe the results in the frequency domain.

Boundary Conditions

Clearly, the scheme will be compatible for interior points of the grid domain.
However, when we try to use the boundary points [ = 0 and [ = N, problems
emerge as 1.7 attempts to access grid points W_; and ¥y ; which of course do not
exist. This problem was accounted for in the previous section, where boundary
conditions were imposed for each end of the instrument. Assimilating these into
the scheme is fairly straightforward, with the Neumann case providing a simple

example:

U, (0,t) = 0,¥g

S 2
N 2h
= 0

v, = T

Similarly, S_; is set to S; and due to various cancellations there is much
simplification of the surface area quotients in 1.7. The grid point [ = 0 then

becomes:

Wptt = A0 4 AU 4+ 2(1 — APy — wpt
= 22207 +2(1 — AUy — wp!
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which is an explicit result for behaviour at the left boundary. With a bit
more effort, the Dirichlet boundary condition with radiation loss can be added to
the scheme in a similar fashion. Note that in the accompanying source code the

boundary condition expressions are broken into parts to maintain clarity.

Adding Viscothermal Losses

While radiation loss has already been taken care of, there is still scope to further
improve the model by accommodating viscothermal losses. This incorporates loss
terms accredited to a viscous boundary layer at the walls of a tube, and the effect
of vibration and damping in the tube walls themselves.l'? Modelling viscother-
mal losses is relatively straightforward in the frequency domain, but can be more
consuming in the time domain.["® Nevertheless, a fairly simple model presented
in chapter 9 of [12] takes care of many of these considerations. It extends Web-
ster’s equation and couples it to another functions w which incorporates damping
parameters. A full statement of the extended system with associated parameter

descriptions is presented in Appendix II.

Further Comments

Some more minor but still important points need to be mentioned. The excitation
mechanism to be bolted on to the Neumann boundary condition will simply be a
unit impulse. Another essential task is to ensure scheme stability. Through energy
analysis? of 1.7, it is determined that the stability condition is A < 1. Having A
as close to 1 as possible is advisable for these schemes. Of particular note is the
special case where A = 1, which in fact simplifies 1.7 to a digital waveguide.'?
Finally, since finite difference methods only approximate an overall solution, there
will of course be some (small) error. Forward and backward schemes have error
proportional to h (or k, if temporal operators are being used), while central

schemes have error proportional to h? (or k2).[1°

1.4.3 Defining the Bore Profile

Now that the theory of impedance computation has been covered, we move on
to discussion about how to construct bore profiles to be used as the input. As
the resulting programme is intended to be user-friendly, it is essential that the

construction be relatively straightforward and easy to use while at the same time

2Energy analysis is a commonly used tool to determine stability of finite difference schemes.
Although it is beyond the scope of this project, much theory and application of the methods is
contained in various chapters of [12].
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being flexible enough to define many instrument shapes and features sufficiently.
The approach adopted here is to use a concatenation of cylinders, truncated cones
and bessel horns. This allows effective and reasonably accurate construction of
instrument shapes, but without over complicating things. It also enables the user
to easily specify ‘jump sections’, which may occur if a particularly detailed design
is being constructed.?

When working with multiple bore sections, the equivalent sample length must
be calculated accurately for each section. Recall that a bore of length L will be
discretized into a finite grid of spacial parts. More specifically, the instrument
radius will be ‘sampled’ at N equally spaced points. If there are N.S sections each
with length dy, d2...dygs, then the number of points allocated to section ¢ will be
N %, rounded to the nearest integer. This ensures that the ratio of section length
to overall length will always be maintained, even if section lengths are repeatedly
changed. Each sample point requires calculation of a radius, which in turn is
used to calculate the surface area values S for the finite difference scheme.

Cylindrical and conical sections are easy to define. The cylindrical case simply
takes two variables - length and radius, with the latter remaining constant all the
way along the section. Conical cases requires three variables - length, input radius
and output radius. The cone profile then consists of N; linearly spaced points
between the two specified radii, where NN; is the number of sample points assigned
to the section, calculated in the same way as above.

Constructing bessel horns is a slightly more complicated but still worthwhile
undertaking as they offer a reasonable approximation of instrument bells.?) A

bessel horn can be defined as follows:

r(z) = bz + xo) ™" (1.8)

where r is the radius at point z along the instrument and v is the flare

coefficient. Furthermore;

()

o= — (%0)_1” (1.10)

with ry and 7 being input/output radii respectively and d being the length

of the section. Therefore, constructing the bessel case requires four variables -

3<Jump section’ refers to when the end radius and starting radius differ in two consecutive
sections.

10
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length, two radius values and a flare constant, which is generally between 0.5 and

0.8. Lower values of v produce a more rapid flare.l’]

1.4.4 Implementation of Impedance Generator

The code included along with the project is written entirely in Matlab and is used
for all the later experiments. Given a pre-specified instrument shape, it models
the acoustical behaviour in the bore and returns four plots - two impedance plots
(one linear, one logarithmic); a plot of the 2D cross-sectional area; and a 3D
rendering of the instrument.

User input includes the total instrument length and the number of individual
sections along with all the quantities to describe each. These quantities are
presented in vector form. When entering the information for a particular section,
the first entry in each ‘section vector’ is required to be an identification number
indicating the type of section to be created. 1 represents a cylinder, 2 a cone and
3 a bessel horn. For example, a conical section vector is entered as [2, d, 79, 71].
This identification method allows the programme to select the relevant script to

construct each bore section.

11



Chapter 2

Experiment and Analysis of

Impedance (enerator

With the conclusion of the previous chapter we now may explore the performance
and applications of the impedance generation software. The main ethos of this
chapter is to investigate the robustness of the program and give an insight into
how it can be used. Preliminarily, experimental tools and analysis methods are
summarised, and this is followed by accuracy tests and demonstration of prac-
tical use. Comments on strengths, weaknesses, improvements and miscellaneous

intricacies are noted throughout.

2.1 Experimental and Analytical Tools

2.1.1 BIAS

Testing the performance of the impedance generator necessitates the need for ac-
curate impedance curves of real instruments so comparisons can be made. BIAS,
or Brass Instrument Analysis System, is now a widely used system renowned
for producing reliable and accurate impedance data.*”l All physical impedance
measurements in this project were carried out over a frequency range of 0-4096
Hz.

2.1.2 Equivalent Fundamental Pitch

A common and useful tool for analysis of impedance comes in the form of the
EFP.I 11 81 This takes an arbitrary reference frequency fy, and compares the
measured resonance frequencies to the harmonic resonances of fy. The units of

measurement are cents. The shape of the plot is independent of the value of fy;

12
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nevertheless, common values include setting fy equal to the fundamental or equal
to fi/4.1

While the EFP can assist to an extent in judging the strength of cooperative
regimes, it is also beneficial in comparing different sets of readings, such as BIAS

data against our model data.

2.1.3 Sum Function

Judgement of cooperative regime strength and prominently sounded pitches can
be represented graphically and numerically by the sum function. It helps give a
rough idea of how well aligned the impedance peaks are for a given fundamental
frequency, and hence give an indication of whether this particular frequency will
produce a strong, easily playable regime.

The sum function was first suggested by Wogram in 1972 - for in-depth infor-
mation see [17]. The theory is straight forward: for each frequency value in the
experimental range, the harmonic partials are calculated and their corresponding

impedance values summed. This is summarised by the following formula:

fp:fh

S(fo) =Y 2(f) (2.1)

fo=fo

where

fo = Fundamental frequency

fp = Harmonic partial of the fundamental
fn = Highest partial

Z(f,) = Input impedance for partial f,

Plotting the numerical values helps indicate the most easily attainable fre-
quency regimes for the instrument under investigation. However, care is needed
when drawing conclusions from the data as it can over-represent low frequencies
or frequencies whose integer multiples lie on the sides of some particularly tall
peaks, giving a distorted representation. This issue can be lessened by using a
scaled version of the sum function where the total sum is divided by the number
of components it was comprised of. Another method of improving the resolution

is to introduce different weighting on successive harmonics.

! £, is the 4th resonance peak. One reason for its use is that the fourth resonance is commonly
used by musicians for tuning.

13
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2.2 Accuracy Tests

On first impressions, the impedance plots look reasonably good. They have
prominent, well defined peaks and obvious decay due to the modelling of com-
bined energy losses. The peak width on the linear plots is one area immediately
identified for improvement. Nevertheless, the general shape is largely what we
would expect. Of course, the real importance lies in whether the model can re-
produce plots accurately when compared against measured data, hence this will
be the main focus of this section.

Accuracy of the impedance generator is explored by comparing measured and
computed impedances of bore profiles through use of some of the methods de-
scribed above. Two selected tests are presented below, with all physical readings
obtained using BIAS. The first is rather simplistic, intended to demonstrate that
the model is satisfactory at a basic level. The second is more detailed and com-
plicated, with the intention of testing the model to its limits. Comments will be
made on accuracy throughout, with a view to improving the model as much as

possible. All computational measurements were carried out at a sample rate of

44100Hz.

2.2.1 Test 1: Simple Cylinder

The profile of a simple cylinder consists of a single section that can be recreated
perfectly by the generator. Hence it is a plausible choice when there is a desire
to keep things as simple as possible. The cylinder in question is a brass tube
of length 1006mm and inner radius 12.5mm, open at one end and closed at the
other, with no other features of note besides its dimensions. Fig 2.1 displays the
resulting impedance curves in linear and logarithmic plots.

The graphs display a set of odd harmonics gradually decreasing in magnitude,
which is what we would expect from a tube open at one end and closed at the
other.'” Initial inspection reveals that the peak locations seem to agree to a rea-
sonable extent. The frequencies of the lower resonance peaks are closely matched
between the calculated and measured cases, but as the frequency increases the

calculated peaks gradually become sharper in intonation.

14
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Cylinder: 1.006m Length, 0.0125m Radius
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Figure 2.1: Linear and Logarithmic Impedance Plots for a Simple Cylinder

To give a clearer picture of how accurate this case is, we can quantify these
differences and observe them in an equivalent fundamental pitch plot. The full
results for the first 10 peaks of 2.1 are presented below and compared to the
measured impedance values. Note that since the even harmonics are missing,
figure 2.2 must label the peaks relative to their place in the theoretical complete

harmonic series for the cylinder.

Table 2.1: Impedance values for the first 10 resonance peaks

| Peak | Measured Freq. | Model Freq. | Absolute Difference (cents) |

1 84 85 20
2 254 257 20
3 423.5 428 18
4 993.5 999 16
5 763.5 770 15
6 933.5 942 15
7 1104 1113 14
8 1276 1284 11
9 1445 1455 12
10 1616 1626 11

15
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EFP for Cylinder Impedance, fO = 84 Hz
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Figure 2.2: EFP for Simple Cylinder. f, = 84Hz

Both table 2.1 and figure 2.2 show that despite the initial observed discrep-
ancies, the model is actually very accurate. The maximum peak difference is
20 cents, which is acceptably low - to add a bit of perspective, 100 cents corre-
sponds to one semitone in an equally tempered scale. Although the frequency
gap slowly increases with peak number, the absolute difference actually falls due
to the nature of intervals being calculated by frequency ratio. Note also that all
the peaks lie close to the ideal resonance line, supporting the well known theory
that cylinder resonances form good harmonic series.

These results confirm that the model is at least accurate enough to try on more
complicated designs. One other area that has not yet been mentioned is peak
magnitude; it is noticeable from the plots that the magnitudes from the model
are consistently higher than those from the physical measurements. Further ex-
periments and observations in [1] indicate that this over-estimation is down to
the plane wave assumptions made when modelling Webster’s equation. Regard-
less, magnitude accuracy is not overly important, as the impedance magnitudes
in instruments depends much on the techniques of the players themselves. The
size of magnitude decrease between consecutive peaks is consistent between the
modelled and measured values; so the discrepancies should be irrelevant even

when attempting to analyse the strength of any cooperative regimes.

2.2.2 Test 2: A More Complicated Bore Profile

As the modelling process has been deemed acceptable, we can try it on a more re-
alistic instrument profile. The acoustics department has records of detailed mea-

surements of several brass instruments, along with their measured impedance.
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The geometrical measurements are very precise and meticulous, which will min-
imise experimental error in this area. The particular design selected was a Hof-
master natural trumpet in Eb of 2.1m length, with accurate measurements of
the lead pipe, jump sections and bell dimensions all included. The resulting re-
construction displayed in 2.3 and 2.4 is an 11 part bore consisting of 7 cones,
3 cylinders and a bessel section - a full description of the parameters for each

section is included in Appendix III.

>\\ ' ‘
. - =

Figure 2.3: 3D plot of detailed bore profile

Figure 2.4: Close up of mouthpiece section

Similarly to the previous test, examination of various plots can provide us

with plenty of information on accuracy:
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Impedance Plots for Detailed Bore Profile
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Figure 2.5: Impedance Plot for Detailed Bore Profile
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Figure 2.6: EFP for Detailed Bore. f; = 77Hz

Again, the lower frequency peaks generally seem to line up, but this time the
peaks produced by the model become flatter as the frequency increases. It is clear
that the discrepancies are much greater than in our previous case; then again, this
is to be expected from such a complicated design. Frequency difference between
the higher peaks sits at around 16Hz, while the maximum and minimum differ-
ences measured in cents are 71 (peak 8) and 13 (peak 2) respectively. Although
this is quite a significant rise, it should be remembered that this still isn’t even
near a semitone in pitch difference, and hence the results could still be considered
reasonable. Another positive to note is that the pattern of harmonicity in the

peaks is followed closely by the model, as seen clearly in figure 2.6. Also, the
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peaks around 400-600Hz have been boosted in height, which is likely due to the
influence of the mouthpiece included in the design. One other point of interest is
the flatness in pitch of the second peak, which highlights how these graphs can

indicate areas of instruments that potentially need improved.

2.2.3 Further Comments

Analysis has showed that with increase in sophistication of bore profile comes
a decrease in impedance accuracy. Test 1 had an average error of 15.2 cents
and test 2 an average of 44.4 cents. Despite this, even in the most complicated
cases the computational results still hold a degree of plausibility. The modelled
lower frequencies were generally always in agreement with the measured values.
This is a strong result in itself, as these lower peaks are often fundamentals or
have a large influence in the pitch of the resulting sound. Performance-wise, the
code runs smoothly and can calculate impedances for even the most complicated

designs in under 2 seconds.

Sources of Error and Improvements

Even with the model being deemed acceptable, it is essential to discuss possible
sources of error along with tabling some potential improvements to minimise it.
Experimental error can roughly be attributed to one of two cases: modelling error

or measurement error.

Modelling Error: There were many assumptions made when modelling wave
dynamics in a tube using Webster’s equation. Two of the most error-prone were
that no transverse modes existed, and that all wave propagation was planar. Un-
surprisingly, real acoustic behaviour in tubes is much more complicated, with
mutli-modal oscillations existing and waves with curved wavefronts being pro-
duced by flaring horns.”) Hence it would be advantageous to further adapt the
model to include these features. Further experimentation in [1] (Ch.8) demon-
strates that using a multi-modal model has a significant effect in shifting the
frequency and magnitude of modelled peaks closer to the measured values.

Assumptions made in modelling viscothermal losses could also contribute to
overall error. Values for the damping parameter oy were only set experimentally,
and the model does not account for the level of energy absorbtion relative to
material of the tube. Furthermore, the characteristics of wave propagation have
been modelled under the assumption that the viscous boundary layer at the inner

tube wall remains isothermal. Keefe ([18]) points out that there is in fact local
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temperature change at the tube walls. Incorporating this into our model is beyond
the scope of this project, but it is still certainly worth highlighting as a source of
error.

Finally, it should also be remembered that finite difference schemes only of-
fer an approximate solution to partial differential equations. Hence, they can

additionally be responsible for some error.

Measurement Error: The significance of errors due to measurement lies in
the fact that impedance results can be sensitive to even very small discrepancies
in the geometry of the bore.[) Despite successfully being able to construct detailed
virtual instruments using only three core sections, there are bound to be small
areas where there is slight deviation from the real design. Additionally, the
lack of curvature in modelled profiles will contribute to reduced accuracy. One
practice known to offer good improvements is to construct a bell with multiple
concatenated bessel horns instead of just one.!!

Inaccuracies from the BIAS equipment could have affected accuracy in the
physical measurements, which in turn will have introduced error into the accu-
racy measurements for the impedance generator. Recently, tests have been per-

formed using a larger frequency sweep in order to improve the robustness of BIAS.

Improvements in all these areas would undoubtedly improve the alignment and
accuracy of our impedance curves. The bandwidth, magnitude and shape could
also benefit, but it should be remembered that these features can also be heavily

influenced by the embouchure of the player.

2.3 Practical Uses

The previous section shows that despite the discrepancies and difficulty in achiev-
ing perfection, the impedance generator is still accurate enough to be used as a
basic design, analytical and investigative tool. To complete the chapter, this

section briefly presents two example applications of the system.

2.3.1 Application 1: Prediction of Notes with the Sum

Function

The first application explores how the impedance generator can be used to roughly
predict the pitches sounded by any bore shape. This can be done by inspection

of the peak positions and/or by use of the sum function. To demonstrate, we
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need run the impedance generator on a virtual model of an instrument and then
compare our pitch predictions to those measured in playing tests on the real in-
strument. Conveniently, all the relevant data is available from a previous project
by the author ([19]), so it will be suitable to re-use it here.

The instrument to be analysed is a Serpent. Despite being quite complicated
acoustically, when all holes are closed it can be estimated as a truncated cone.
The Serpent used in the playing tests has a total length of 2.38m, consisting of a
mouthpiece of length 0.025m, a crook of 0.41m and a main bore section of 1.94m.
The internal radius at the left end is 5.5mm, while at the right end it begins
at 48mm and gradually rounds off to 54.5mm. This bore was modelled in the
impedance generator using four sections (3 conical and 1 bessel), producing the

curve shown in 2.7.
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Figure 2.7: Bore Profile and Impedance Curve for Serpent

This curve generally agrees with observed values on the BIAS measurements
of the actual instrument. In order to predict what pitches may be easily played,
we must look for evidence of strong cooperative regimes - in other words, we look
for strong harmonically related peaks supporting some base frequency. This is
where the sum function comes in handy, as it produces a graph from which the
strongest frequency regimes can be read off. Fig 2.8 is the relative sum function
plot for the impedance curve in 2.7. Any partials above 3000Hz are ignored, as

they will contribute little, if anything to the overall intonation.
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Figure 2.8: Relative Sum Function

The resulting plot has several well defined peaks, representing the frequencies
at which cooperative regimes may be most easily formed. The five tallest suggest
that with all holes closed the serpent will pitch at 64Hz, 132Hz, 192Hz, 257Hz
and 326Hz. Playing tests confirm that pitches of 66Hz, 135Hz, 200Hz, 265Hz
and 340Hz are sounded, which are all within the vicinity of our predictions.!!
These correspond to the notes Cy, C3, Gz, C4y and E; on the Serpent. This
demonstrates that the impedance generator can be used adeptly in prediction of

how instruments may sound.

2.3.2 Application 2: Bore Alteration

The second application focuses on impedance behaviour when certain features of
a typical brass instrument are added or removed. It is intended that this could
be used as a tool for basic demonstrations, or to simply entertain the curiosity of
the more adventurous user.

It is already common knowledge that items such as a mouthpiece or bell will
alter the shape and positioning of impedance peaks.*”! Starting with a simple
cylinder, we will use the impedance generator to produce and study two cases
where a new part is attached.

Figure 2.9 demonstrates the effect of an attached mouthpiece. The main
points to note from the plot is that the peak heights have been boosted and
the higher resonance frequencies slightly decreased. The magnitude increase is
due to the mouthpiece acting like a Helmholtz resonator while the lowering of
frequencies is because it also effectively lengthens the tube, which becomes more

profound at higher frequency.?"!
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Figure 2.9: Comparison when Mouthpiece is attached

The attachment of a bell is explored in 2.10. The plot indicates that it roughly
does the opposite to the mouthpiece; there is a reduction in magnitude at higher
frequencies along with an increase in the frequency values of lower pitched reso-
nances. Physical experiment shows that a bell provides more efficient radiation
of high frequency waves, giving the characteristic ‘brassy’ sound. Since more
energy is radiated, there will be less remaining inside the bore, as shown on the
plot. The rise in frequency of the lower resonances is attributed to the bell ef-
fectively shortening the the tube, which will most affect behaviour in the lower

frequencies.*’)
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Figure 2.10: Comparison when Bell is attached

This brief discussion has demonstrated that data produced from altering the
bore profile is consistent with physical observations, and therefore the system is

also acceptable for this type of application.
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Chapter 3

Bore Optimisation

3.1 Initial Discussion

We now turn our attention to the reverse problem, where the aim is to generate
a bore that matches some pre-specified impedance values as closely as possible.
This is arguably a more challenging task than the forward problem; however,
once understood, the theory for carrying out such a computation actually seems
fairly intuitive and simple. The key to tackling the problem is to run through
lots of possible bore designs and quantitatively compare the impedance curve of
each one to the target curve by using an objective function to rate the suitability
of each design. The aim will be to develop some sort of ‘search method’ that can
find the closest match, which will correspond to the minimisation of the objective
function.

Informally, the above essentially describes an optimisation process. The gen-
eral form of an optimisation problem, adapted for the notation used herein, is as

follows:[21

min  O(a)
subject to  g(a) <0
o € RV

where O : RM — R is the objective function and g : R¥ — R is a
system of constraints on the various instrument parameters. Nv represents the
total number of instrument parameters, which are arranged into a vector a =

(1, g...ary, ). For example, an instrument made up of a cylinder and a cone is
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written o = (19, dy, 70,71, ds).
To take this initial theory further, we need to choose a suitable optimisation

algorithm and define an appropriate objective function.

3.2 Rosenbrock Algorithm

There are many different types of optimisation algorithms, including direct search,
gradient-based and stochastic. The Rosenbrock method?® 23 is a 0Oth order
direct search algorithm which is suited to our problem. As hinted by ‘Oth order’, it
does not require any gradient information in order to work, which is advantageous
since gradient analysis requires calculation of many computationally-expensive
derivatives if not skilfully formulated. Additionally, the algorithm is fairly easy
to understand, which should make it easier to alter and improve the code in any

future work.

3.2.1 Outline

As previously stipulated, the aim is to find a vector of parameters a which gives
the minimum value of the objective function O, denoted O(é&). The algorithm
takes a series of steps in strictly orthogonal directions, rating each new set of
parameters and regularly updating the overall direction of movement to point
in the direction of best success.l" 2l This can be roughly summarised in two
sections: the Exploratory Stage and the Orthogonalisation Stage. Much of
the theory here is based on the detailed articles of [1], [22] and [24]. Figure 3.1 is
a good demonstration of the algorithm in action, showing the navigation towards
the minimum of a function of two variables. In most applications, the number of

variables will be higher and hence the movements will be difficult to visualise.
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Figure 3.1: Rosenbrock Optimiser working on a contour plot. Black lines denote
a successful step; dotted red lines denote a failed step

Initial Settings

Working with an instrument of N, parameters can be thought of as working in
N,-dimensional space, with each parameter lying on a coordinate axis. Various
quantities must be defined to initialise the algorithm. An N, x N, direction
matrix D with mutually orthogonal columns holds direction vectors d; for each
parameter, with |d;| = 1. In default settings, the starting directions are simply
coordinate directions, hence D will be the identity matrix [n,. The step lengths
l = (l1,ls...,ly,) for each direction d; also need to be defined. along with values
for two tuning parameters @ > 1 and 0 < b < 1. Finally, we must specify an

initial value for a in order to calculate a starting value for O.

Exploratory Stage

Using the terminology just defined along with a. to represent the current set of
parameters, the algorithm takes a step of distance [; in direction d; from a,. This

can be expressed as

o= a.+d (3.1)
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This provides us with an updated set of parameters which describe a new bore
design. It is then necessary to check if the impedance curve of this new design
is any closer to matching the target curve. Therefore, the impedance generator
is used to get Z(a), and this data is in turn fed into the objective function to
return a numerical rating. From this point, the algorithm proceeds in one of two

ways:

e If O(a) < O(ex.), then the step is deemed successful as the objective func-
tion indicates that this design is closer to matching the target. . is set to
a and the step size [; is multiplied by a, so that it will search further in

this direction next time.

e If O(a) > O(a.), then the step is deemed a failure. « is discarded and
o, is retained as the current preferred design. [; is multiplied by b, which

reverses and reduces the direction of travel for the next cycle.

This procedure is repeated for each dimension 7 until both a success and a
failure have been found in each direction. This indicates that the search has been
exhausted for the current set of direction vectors contained in D, and triggers

the beginning of the orthogonalisation stage.

Orthogonalisation Stage

The purpose of this stage is to recalibrate the direction vectors so that they
point in the direction of best progress so far, while at the same time maintaining
the orthogonal nature between direction vectors. It can also be thought of as
rotating the rigid ‘coordinate frame’ to further guide the optimiser towards the
likely optimal point.

Again, it is necessary to define some initial quantities in order to carry out
the orthogonalisation. During the exploratory stage, the total distance travelled
in each direction d; is denoted by A\;. We now define a new matrix A, which logs

the \;’s column-wise as follows:

Nv
Ap=> Nd” (3.2)
i=k

where dl(-o) indicates the direction vectors from the previous stage. The struc-
ture of this matrix is easiest to understand when we consider the initial case

where the d; are simply coordinate vectors. Then 3.2 produces the matrix
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A
A A

A=| T (3.3)
AN, AN, --- A,

where the first column contains all successful steps in an exploratory stage, and
hence joins the beginning and end points of the stage. The procedure to obtain

25] and uses these

new direction vectors is based on the Gram-Schmidt technique
new quantities along with the direction vectors from the previous stage, dl(-o).
The explicit derivation will not be covered here, but it is well documented in
[1], [22] and [24]. One point of note, however, is that the version provided in [22]
is susceptible to numerical instability in cases where the total distance travelled
in a certain direction is equal to zero (this is possible when the algorithm ‘doubles
back’ on itself in a particular direction). To avoid this occurrence, the modified
version of Palmer ([24]) is used. The new direction vectors are then be expressed

as

Ao Aq — d A2

dV = 4
' |Ai—1||Ai| (3 )
for 2 < i < N, with
A
d" = A 1| (3.5)

for i = 1. In the special case where \;_; = 0, dgl) = —dgo_)l.
This new set of direction vectors is then used in another exploratory stage,
and the whole process keeps repeating until certain termination criteria have been

met.

Constraints and Termination Criteria

It is in our interest to restrict the solution space as much as possible without
ruling out sensible instrument designs. The most obvious constraint is to ensure
that all parameter measurements «; are positive, which of course keeps the prob-
lem within the bounds of physical reality. It is worth imposing more bounds to
further restrict the solution space; additionally, upper and lower bounds are as-
signed to all lengths, radius and flare parameters. If the algorithm strays outside
these boundaries, the objective function is simply set to a maximum, and so the

optimiser will take no further interest in that particular set of parameters. Other
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constraints on the system include eliminating the physically incompatible case of
r1 > ro for bessel horns, and restricting the order sections can be arranged in to
ensure the aforementioned shape can only be placed at the end of an instrument.

A range of termination criteria can be utilized, but the more practical are
time and distance restrictions. Time restrictions are self explanatory; a threshold
can be set and when the elapsed time exceeds this, the algorithm terminates.
Slightly more practical is the latter case, which measures the maximum distance
travelled in coordinate directions by subtracting a from a. after each iteration.
Setting an acceptably small threshold will ensure that the algorithm has enough

time to converge on a possible solution before termination.

3.3 Objective Function

To complete the bore optimiser we need to define an objective function that
provides a suitable rating of how closely a curve matches the target. Since peak
location and magnitude are the two most influential features of an impedance
curve, it seems logical to base any objective rating system around these. We also
wish the objective function to be as smooth as possible and to have a prominent,
obvious global minimum - something similar to De Jong’s function in figure 3.1
would be an ideally suitable case in two dimensions.

The strategy we will adopt is to use two separate objective functions com-
bined together with different weights to give the overall rating as a score between
0 and 1, with 0 being a perfect match and 1 being no resemblance whatsoever.
This is keeping within the standard practices of optimisation techniques where
the primary aim is to minimise the objective function. The two functions rate
peak location and height relative to the target curve. They are each based on a
normalised inverted Gaussian function®®, which possesses the basic characteris-
tics that we seek along with flexible parameters to alter the general shape. The

peak location function is expressed as

— 2
Or(a) = Nka >o1-ew (%) (3.6)

where §¢; = |¢; — ¢;| is the difference between the test and target locations of
peak 7, p, is a strictness parameter, v, is a windowing parameter and Npk is the
total number of peaks being tested. p, and v, can be used to control the width
of objective curve bell. Using this Gaussian-based approach results in a much

steeper function gradient at even moderate distances from the solution, resulting
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in improved convergence speed.!!]
The peak height function is very similar to 3.6 above, with slightly different

parameters:

1 Npk .y 552
Ogfa) = —> 1- h 3.7
o) = i 21— () (37)
where 0§; = |& — &) is the difference between the test and target heights of
peak 7. pup is again a strictness parameter, while v, is a windowing function
based on magnitude rather than frequency. The full function is then defined by
combining 3.6 and 3.7 and adding weights to each:

. w1071 + w0y

w1 + Wa

O(a) (3.8)

where the w; are generally set between 0 and 1. Since the length of an in-
strument holds a greater influence than bore radius over the overall sound of an
instrument, the default values of w; are often set with more emphasis on peak

location.

For the sake of clarity, it will help to visualise what had just been mathemat-
ically described. When tackling a two dimensional problem, such as a cylinder,
the objective function has the typical (inverted) Gaussian shape with a large dip
towards the minimum as the length coordinate (y) becomes closer to the optimal
solution. The change of gradient in the radius (z) coordinate depends on the

weighting assigned to 3.7.

Length Radius

Figure 3.2: Objective Function based on length and radius, w = [1,0.2]. Optimal
solution is at o = [0.01,1]
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Intuitively, increasing the number of instrument parameters increases the di-
mension of the problem and hence the complexity of the objective function. The

implications are this are discussed in further details in section 4.2.

3.4 Implementation of Bore Optimiser

The code for the bore optimiser provides a relatively high degree of user cus-
tomisable features. Users must specify the number of sections along with the
corresponding number of variables that they wish the output bore to have. They
also must define a vector containing the nature of each section type, using the
number prefix system as described in 1.4.4. Using this approach results in the
optimiser having to stick to the section order defined at the beginning; this is an
advantage as it reduces the size of the solution space, but also a disadvantage as
the order of sections may not be interchanged during the optimising process. Fu-
ture work could attempt to rectify this issue, but how big an ‘issue’ it actually is
depends on the readers preference between flexibility and efficiency. One further
restriction is that bessel horns may only be placed at the end of an instrument,
which is of course a justifiable action.

Above everything else, the user must input some target impedance data. For
the time being, only data on peak locations and magnitudes is needed due to the
nature of our objective function. Data for a ‘complete curve’ can be trimmed
down by using Matlab’s peakfinder function. Alternatively, the user may specify
a target bore shape, from which a target curve can be calculated. This option
has been used mostly for testing the optimiser. Note that scoring instrument
designs on peak information alone eliminates the uniqueness of solutions. Starting
parameters can either be defined by the user or generated randomly.

Optional inputs include specified bounds and step sizes for radii, lengths and
flare constants, along with time and step thresholds for the termination of the
optimiser. These are set to default values if not specified by the user. Care should
be taken in setting the upper and lower bounds, as being too flexible may vastly
increase calculation time and produce poor results, whilst being too restrictive
risks ruling out reasonable solutions. In cases where the optimal solution falls
outside of the solution space, the program will attempt to find as close a match
as possible.!

Once the bore optimiser has terminated, it returns the optimised bore param-

IThis, for example, could happen if we are estimating a detailed trombone as only a cylinder
and bessel horn. Hence the impedance curve for the detailed trombone will be difficult to match
exactly with only these sections.
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eters a and (if requested) various plots of the optimised impedance curve, target

curve and optimised bore profile.
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Chapter 4

Experiment and Analysis of the

Bore Optimiser

Like with the impedance generator, we may now test the accuracy and robustness
of the bore optimiser as well as discussing improvements and applications. The
chapter begins by examining how the optimiser performs with single section bores,
and then moves onto a more complex problem. Any issues or challenges are
then discussed along with possible performance improving modifications. The
optimiser is quite susceptible to changes in the algorithm parameters, hence much

of the work presented in this chapter has been produced after lots of fine-tuning.

4.1 Accuracy & Performance Tests

4.1.1 Test 1: Optimising Single Sections

To verify the performance of the optimiser on a basic scale, it is tested on the
constituent parts that are used to make up full bore profiles. What follows are
a set of simple tests on a cylinder, cone and bessel horn. A target bore is set
for each test, from which a target curve can be calculated using the impedance
generator. All tests are carried out using the following parameters: Npk = 10,
v, = 60, v, = 60, pp, =1, up =5, a = 3 and b = 0.5. Maximum weights of 1
are assigned to both the peak locations and peak heights, and the time threshold
is set to 60 seconds. These values were all selected after a period of rigorous
pre-testing. Step sizes have been set to rather large values, as suggested by the
informal article in [27]. The reasoning behind this is that even if the search
path falls into a local minimum, the step values will still be large enough to

offer a good chance of finding a lower value of the objective function, allowing
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the algorithm to proceed. Since the neighbourhood of points around a local
minimum will generally be higher, small step sizes will only increase the chance
of getting permanently stuck in a local minimum.

Convergence on the global solution may depend on the selection of the starting
point - the further away the algorithm starts, the greater chance it has of getting
stuck along the way. Therefore, the tests are run several times for each shape using

randomly generated starting points within the appropriate bounds. (rounding?)

Cylinder

The bore optimiser was applied from 4 starting points to try and find the closest
matching parameters for a target cylinder of radius 0.01m and length 1m. The

results are summarised in table 4.1:

Starting Parameters | Optimised Parameters | Time (Perfect Match)
0.0231, 1.4125 0.01, 1.005 -
0.0672, 2.4157 0.01, 1.005 -
0.0152, 2.4294 0.019, 0.995 -
0.0672, 1.2649 0.01, 1 34

Table 4.1: Optimisation of Cylinder. Parameters = [rq, L]

The optimiser clearly deals with cylinders well, which is the least we could
have hoped for. It will often return a perfect solution well within 60 seconds;
when this doesn’t happen, it still gets within a few millimeters. Removing the
time threshold altogether will almost always result in a perfect solution being
attained. Regardless of starting point, the algorithm will often be within a close

region of the optimal solution inside 10 seconds.

Cone

The same procedure was applied to a target cone with ry = 10mm, r; = 40mm
and L = 800mm.

Starting Parameters | Optimised Parameters
32, 65, 2001 16, 66, 793
67, 48, 186 15, 63, 791
60, 66, 1729 10, 47, 801
54, 53, 1041 11, 41, 798

Table 4.2: Optimisation of Cone. Parameters = [rg, rq, L]
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Table 4.2 generally demonstrates very good results, but overall accuracy is
slightly decreased due to the increase in dimension of the problem. Regardless,
some results still get very close to a perfect solution - row 4 of the table being
a good example. The two worst performing tests seemed to be the ones with
initial lengths at the extremities of the solution space (rows 1 and 2), verifying
that distance of starting point can affect convergence rate and success. Lengths
tend to converge quicker that radii, and become close to the solution very quickly.
Bearing in mind the time threshold was still 60 seconds, the performance would

likely improve if this threshold was lifted.

Bessel Horn

The parameters selected for the target bessel horn were r0 = 20mm, r; = 100mm,

L = 1000mm and v = 0.7.

Starting Parameters | Optimised Parameters
66, 72, 1911, 0.655 15, 90, 1013, 0.642
70, 137, 490, 0.624 15, 72, 1009, 0.665
52, 96, 917, 0.717 17, 96, 999, 0.757
26, 76, 712, 0.701 25, 84, 993, 0.714

Table 4.3: Optimisation of Bessel Horn. Parameters = [rq, 71, L, 7]

As expected, dealing with a 4-dimensional problem further affects the accu-
racy. The radii values are on average about 10mm out, while the flare constant
never really shows any pattern of convergence - in tests 3 and 4 it actually diverges
from the optimal point despite starting close to it. This may be because the flare
of a bell can influence both peak position and magnitude, so the objective func-
tion essentially has a harder job to do when analysing v. However, the length
accuracy is still very good, coming within 1mm of the optimal solution in test 3.
Additionally, it still converges very quickly to the optimal neighbourhood. This
is a satisfying result when it is remembered that length is a formidable influence
on the acoustics of an instrument. Again, longer time thresholds or further ex-
perimentation with the parameter values may yield improved results. Despite the
inaccuracies, it is still worth applying the bore optimiser to a more complicated

problem to see how far it can guide us towards an optimal solution.
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4.1.2 Test 2: A More Challenging Optimisation

In practice the bore optimiser will largely be used on multi-section bores, so it
is sensible to see how it performs with this more complicated task. Dealing with
multiple bore sections of course further increases the dimension of the problem,
and this will likely result in the plentiful identification of areas to be improved
later.

The chosen target was the impedance curve for a 3-section bore made up of
a concatenated cylinder, cone and bessel horn designed to roughly estimate the
profile of the trumpet in section 2.2.2. This particular setting therefore involves 9
dimensions. All other core parameters remained the same as in 4.1.1, apart from
the time threshold which was raised to 120 seconds. Starting parameters were

again generated randomly.

A problem rapidly emerged with the multi-bore case, where some of the suggested
designs were physically unsatisfactory or completely untenable for calculating a
proper impedance curve, which can crash the program. Figure 4.1 is one such
example. This problem stems from a lack of restrictions on ‘jumps’ in input and
output radii in consecutive sections - the optimiser is free to create unrealistically
large jumps, and the issue can be further compounded if the starting design is
also unrealistic. In response, a ‘jump limiter’ was added into the code, which

only permits very small jumps and enhances the smoothness of output designs.

T T —T T
008 ' —
0.06 =

004 -

00z =

Radius (m)
L

002 =

-004 - —

05 1 15 2 25
Length (m)

Figure 4.1: An Unsatisfactory Bore Design

When initiated with random starting points, the optimiser returned mixed

results. Some results (eg. 4.2) are very good, taking a difficult, unrealistic original
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design and converging towards the optimum reasonably well. Again, lengths
appear to converge the best. However, in other cases the bore designs, despite
being feasible, were still unsatisfactory - one common flaw was production of
unusually large radius values on the left side of the tube - values of 30mm or
more occurred often. Various other initialised values immediately got ‘stuck’,
resulting in a culmination of failed steps, terminating the algorithm very quickly

due the step sizes having been rapidly reduced below the threshold.
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Figure 4.2: Bore Optimisation from randomly generated initial parameters. Dot-
ted green line is starting design, solid green line is optimised design, dotted blue
line is target bore.

Taking these observations into account paved the way for more improvements,
this time related to the flexibility of the initial parameters. It is not unreasonable
to assume that when optimising, we already have a good idea of the instrument
type and hence the rough shape. This then motivates the introduction of tem-
plates of initial parameters,!!! which rule out the vast majority of the unusual
cases previously talked about. Therefore, all further test results presented in this
section were based on a generic 3-section trumpet template. Impedance and bore

plots are presented in 4.3 and 4.4.
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Impedance for Optimised Bore with Template Starting Point
50 T T T T T T T

Optimised Impedance

w
&
T

Target Impedance =

M I~ w
=] L) =
T T T
I I I

Impedance Magnitude (MOhm)
T
L

:bJLliL¢L¢ hi

0 100 400 500 500 700 00 500 1000
Frequency (Hz)

Figure 4.3: Impedance Curve for 3-section Bore Optimisation
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Figure 4.4: Bore Profile for 3-section Bore Optimisation

The optimiser performance seems to improve when using the template method.
In figure 4.3 the peak locations match up quite well, which is of course always
one of the primary objectives. The peak height accuracy is less impressive, which
means convergence of radius parameters is still a sticking point, as confirmed in
figure 4.4. Another notable trait of the optimiser is that it will rarely return the
correct ratios of section lengths. This is only a minor observation however, as we
are only interested in finding a bore that matches the impedance values - not the

target bore that these values are obtained from. Given that many designs may
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fit the specified data, we should bear in the mind that the target bore shape is
only included to allow the reader gauge performance of the results.
As a last piece of analysis, table 4.4 shows numerical values placed on the

accuracy of the first 5 peaks of the multi-bore case.

Table 4.4: Comparison of Optimised and Target values

| Peak 1 | 2 | 3 | 4 | 5 |
Target Freq. (Mag) | 47 (47) | 135 (21) | 216 (12) | 296 (13) | 376 (7.5)
Opt. Freq. (Mag) | 49 (39) | 136 (11) | 210 (10) | 295 (8) | 375 (4)
Freq. Diff. (cents) 72 12 49 6 5
Mag. Diff (%) 17 18 17 33 17

4.1.3 Further Comments

Analysis results show that the bore optimiser can deliver reasonable results even
in complex cases. However, it is far from perfect - so naturally we should be
actively looking into how to improve it as much as possible. For the time being,
the program can at least be used to gain a ‘rough’ design and further refinements
can then be made manually by using the impedance generator.

If time permitted, it would be interesting to run the optimiser without a time
threshold and see if it could make any more headway towards the optimal solution.
The two minutes allocated for calculations for the mutli-bore case was really quite
restrictive; certainly, similar experiments carried out in [1] took anywhere from
15 minutes to several hours to attain accuracy within 0.01mm.

Note that all the target impedance curves in this section were produced using
the impedance generator and not from experimental BIAS measurements. Fur-
thermore, the target designs were always within the solution space and so getting
a perfect match was always theoretically achievable. If we do use experimental
measurements, the target design will often be outside the solution space as it will
be impossible to model it perfectly. In this case, the optimiser will still attempt

to find a solution as close to the optimal curve as possible.

4.2 Difficulties & Improvements

As a result of the discussion about optimiser performance, the focus of the project

has shifted from the practicalities of the program to offering explanations of its
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shortcomings and various methods to improve the likelihood of complete conver-

gence.

4.2.1 Sources of Difficulty
Objective Function

As already mentioned several times, with increase in bore complexity comes an
increase in the dimension of the overall problem; the consequences being a tougher
navigation space for the optimiser. It is the occurrence of local minima in the
objective function that inhibit the algorithm from finding a perfect solution all
the time, for if it finds itself in one then there are no immediate points in the
neighbourhood that will lower the objective and allow the search to continue.
As the complexity of the problem increases, so inevitably do the number of local
minimum too. Measures have already been taken to try and avoid this happening;
setting large default step sizes was one such measure.

Despite not being able to explicitly visualise any objective function above
two dimensions, we can still gain an idea of higher-dimensional behaviour by

examining 2D subspaces of O(a).l!

Cylinder Radius vs Bell Flare Cylinder Radius vs Bell Flare

Flare Constant

0025 0%
Cylinder Radius (m) Cylinder Radius (m)

Cylinder Length vs Bell Length Cylinder Radius vs Bell Radius

4

o

F J
g
T e

004

Bell Radius (m)
8

Cylinder Length (m) Cylinder Radius (m)

Figure 4.5: 2-dimensional Slices of 6-dimensional objective function. Top Line:
Cylinder Radius vs Bell Flare; Bottom Line: Cylinder Length vs Bell Length,
Cylinder Radius vs Bell Radius
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Figure 4.5 shows several 2D subplots of a 6 dimensional problem made up of
a cylinder and bessel horn. To produce each plot, four of the parameters have
remained fixed while the two being examined are varied. It quickly emerges, as
repeatedly predicted, that the objective function becomes much more compli-
cated, with some subspaces revealing the presence of several local minima and
non-smooth behaviour. Therefore, despite our desire to keep the objective func-
tion as smooth and simple as possible, non-convex behaviour is unavoidable when

studying high-dimensional problems.

Initial Parameter Selection

The issue of initial parameter selection has already been well documented and
addressed during the multi-bore test. Regardless, even with templates the initial
parameter choice can still have a bearing on how well the algorithm will converge
to the optimum. For example, in figure 4.4 the radius of the cylindrical section
does not converge at all. This is presumably because the region of the objective

function it is based in must be too complex to navigate out of.

4.2.2 Improvements/Future Work

Much work has already gone into improving the optimiser as we go along, but
there are plenty more suggestions of areas that could be improved, or possible
methods to utilize to enhance performance. Implementing these is beyond the
scope and timescale of this project; nonetheless, they are summarised in this
section, and have much potential to be used in future work to further improve

the robustness of the optimiser.

Objective Function Improvements

The reader may have noticed that our objective function does not take into ac-
count any data on peak width and shape, which can further influence the acoustics
of a final design. The reason for this was mainly because the curves produced by
the impedance generator generally have poor shape definition, and hence would
not contribute much useful data anyway. Regardless, if further improvements
were made in the impedance generator, inclusion of a least squares compar-
ison of all points on test and target curves could enhance the reliability of the
optimiser. In the accompanying code, the objective function already includes a
bypassed version of this, so it would be an easy feature to alter in the future. A

further simple modification would be to introduce weightings on individual
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peaks. In cases like plot 4.3, the lower impedance peaks will influence the overall
sound much more than the upper ones. Therefore, prioritising matching of the
lower peaks may help the algorithm converge faster, as it will spend less time
‘fine tuning’ the minor peaks.

Another more ambitious improvement would be to look at so called smooth-
ing algorithms. These generally aim to create some sort of approximating
function to capture the most important information in a data set. Intuitively,
this could be applied to our objective function to try and iron out some of the
local minima that hinder the optimiser. A good introduction to the theory along

with some algorithms and a useful applet is located at [28].

Algorithm Improvements

There are a wealth of methods that could potentially improve the algorithm; here
we will briefly look at two. The general idea is to try and provide ways for the
optimiser to converge to as good a solution as possible.

The first technique is so-called ‘brute force methods’. The general idea
is trivial; the solution space is scanned exhaustively in an attempt to find the
optimal solution. It is not suggested that the method is used in this exact way,
as it would take huge amounts of time to do a conclusive search. Rather, we could
proceed in a similar way to 4.1.1, where a finite number of random points/tem-
plates are tested, the results logged and the closest solution selected. This is not
a particularly imaginative fix; though it is simple to initiate and can occasionally
lead to very good results.

A more sophisticated method is called simulated annealing. This is a
stochastic method, which (generally speaking) sometimes allows the search algo-
rithm to accept a rise in objective function if there is a good probability that the
corresponding direction points towards the optimal solution. A detailed overview

of the process is given in [29].

Permitted Bore Designs

The most notable restriction related to accepted bore designs was the lack of a
mouthpiece structure. This absence is problematic when attempting to find a
bore to match an impedance curve generated for a real instrument, as the mag-
nitude ‘boosting’ effect of the mouthpiece cannot be replicated. In this situation
the optimiser will try to compensate as much as possible, but inevitably cannot
produce a near-perfect match. Mouthpiece modelling was briefly attempted using

reversed cones, but problems arose when the optimiser would increase its length
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to unrealistic values, rendering the whole exercise useless. To rectify this issue, it
would be necessary in the future to develop a separate mouthpiece section with

its own set of bounds.

Efficiency Improvements

Since the code performs hundreds of evaluations a minute, any improvements in
efficiency are greatly sought after. One such improvement is related to step sizes.
Currently, the default step sizes vary according to parameter, with length steps
being at least an order of magnitude above radius steps. Normalising the steps
to unit size for use in the optimiser (with de-normalisation for objective function
calculations) is evidenced to offer better efficiency.[!)

On a more general note, there are undoubtedly many parts of the code where
efficiency can be actively improved upon. Many adjustments and improvements
carried out during the testing were implemented as rough patches. Given a bit
more time and attention, the author is confident that parts of the code can be

implemented with better finesse.

4.3 Practical Uses

Despite the main focus of this chapter having gradually veered towards detailed
discussion of performance, drawbacks and improvement, it would still be nice to
outline uses of the bore optimiser in its current guise. Therefore, to round off the
project we will study a simple example where the optimiser is used to some sort

of acoustical feature of an instrument.

4.3.1 Application: Shifting Pitch-Standard

This is a relatively basic task in which we simply aim to shift the pitch standard
of an instrument down a semitone. This essentially involves asking the optimiser
to reduce the frequency value of each impedance peak by about 50 cents. The
motivation for doing this could come from the fact that there sometimes exist
different pitch standards between acoustically identical instruments. For exam-
ple, it is observed in [8] that 17th century and modern day cornetts operate
acoustically in exactly the same way, but with a pitch standard about a semitone
apart. Therefore, it may be interesting to determine how we could alter such
a modern-day instrument to play at the same pitch as an older model, or vice

versa.
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A test ‘instrument’ was constructed from a cylinder and a bessel horn, with
a = [0.01, 1.5, 0.01 ,0.09, 0.5, 0.7]. The location of each frequency peak was
noted and the value for each detuned peak calculated. This was then assigned as
the target for the optimiser, with the bore design a set as a starting point. The
algorithm was run for 60 seconds with Npk = 10 and full weighting on both peak

location and magnitudes, producing the results displayed in figure 4.6.
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Figure 4.6: Impedance plot and EFP for detuned instrument. fy, = 82 Hz

The impedance plot indicates that a reduction in pitch has resulted, but to
get a proper idea of how close it is to our target we may examine another equiv-
alent fundamental pitch plot. The results are good; the EFP clearly shows an

approximate reduction of around a semitone for each peak, and the harmonic
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relationship between peaks is almost perfectly preserved. Numerically, the ma-
jority of peaks were reduced between 40-60 cents in pitch, with extreme values
of 86 (peak 4) and 27 (peak 10). The average reduction was 50.2. Therefore, the
optimiser has been verified as a useful tool for simple design tasks like the one

we have just covered.

4.3.2 Further Applications

The optimiser can potentially be used to perform many other design alterations,
including magnitude reduction and individual peak tuning.!!! The latter may be
motivated by the observation back in section 2.2.2 that a typical characteristic
of many brass instruments is their production of a significantly flat second peak.
We then may wish to use the bore optimiser to try and sharpen this peak and
hence improve the overall harmonic alignment of the resonances. Performing this
task effectively will require further experimentation, as preliminary tests showed
that the objective function was often over-influenced by the comparatively large
peak 1 or the target impedance was too close to the initial impedance, both of
which restricting the optimiser’s flexibility. Individual peak weighting would be

a relevant solution in any future work on this problem.
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Chapter 5
Conclusions & Appendices

This project originally set out to construct user-friendly software which could pro-
duce impedance curves from bore data and vice versa. In general, implementation
of this aim was successful - but there is always room for improvement.

The impedance generator is robust and has reasonable accuracy. While it may
not be suited to extremely fine precision, its applications can be extremely useful
for learning more about the behaviour of a particular instrument. The accuracy
of the bore optimiser needs plenty of improvement; regardless, it can still be
usefully used to produce rough designs that can be fine tuned later. Despite the
relatively simple theory, it was trickier to construct a reliable implementation
of the optimiser. The reasons for this are well-documented. While constructing
a super-accurate optimiser would have been a big ask in the time constraints
available, it was still appealing enough to implement the algorithm and see how
it performed. This provided a wealth of further motivation to explore the more
intricate details of optimisation techniques,

Asides from the theory, implementation and application, one of the enduring
ideas in this project is that the work may be constantly updated and improved in
the future. In this vein, there have been extensive discussions on improvements
needed to both the impedance generator and bore optimiser, and suggestions
tabled on how to carry them out. Many of these could be tried and tested as part

of a future project.
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Appendix I

Finite Difference Scheme Operators

This is a glossary of all the operator notation for schemes used with finite differ-
ence methods. Spacial grid points and steps are denoted as [ and h respectively,
while the temporal equivalents are denoted as n and k. The identity operator is
denoted as e with an attached subscript indicating whether to move forward or

backward on the space or time axis of the grid being used. For example, e, u}

R n
= Uy

Spacial Operators

5{E+ ~ %(6:24- — 1)
0o~ 3 (1—ey)
Oy ~ %(eﬁ —€x)

5:0:(: = :c+5:c— = %(e:c—‘r -2+ ex—)
Temporal Operators

Ops ~ plerr — 1)

B

5t— ~

(1—e-)

=

5,5. ~ i(@t_’_ — et_)

O = 04404 = k%(ewr —24e-)

Averaging Operators
Hey = %<€$+ +1)

po— 2 5(1+e;)

M. =2 %(6x+ +€5-)

Haz = HatHo— = }l(ex-i- +2+ ex—)

A7
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Appendix 11

Viscothermal Losses System

A lossy version of Webster’s equation can be expressed as

S\Dtt = '}/2(8\1155)1; — 651/41075 (51)

where

wy = €SV, — 20qw; — waw (5.2)

and

€= C\/% (510)1/4 (5.3)

M is the mass per unit area of the tube walls, p is the density of air, ¢ is the
speed of sound, o¢ is a damping coefficient and wy is a fundamental frequency
parameter. For simplicity, M is set to equal 1. w is scaled with tube radius to
represent the ratio of radius to the viscous and thermal boundary layers.!'8!

A finite difference scheme for the above is given in [12]:

1250 Y = V200 ((fte—8)0,_ W) — eSY45,w (5.4)
(5ttw + 20’061}.'(1) + W(Q)w = 651/4515.\11 (55)

Like with the lossless case, this can then be expanded and rearranged into a
recurrence relation, which is clearly laid out in the code. The impedance generator

uses this fully lossless model for all its calculations.
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Appendix III

Detailed Bore Measurements for Section 2.2.2

Presented is a detailed description of all 11 bore sections used to reconstruct the
detailed instrument in section 2.2.2. Identifier tags are used to refer to the type
of shape used each time - to recap, 1 represents a cylinder, 2 a cone and 3 a bessel

horn. All measurments are expressed in millimeters.

Section | Type | 7g T L v | Comments
1 2 18.17 | 16.44 | 5.27 | - | Mouthpiece
2 2 16.44 | 4.22 | 16.53 | - | Mouthpiece
3 2 4.22 | 7.39 | 48.64 | - | Mouthpiece
4 2 7.39 9 25.55 | -

5 2 10.2 | 10.5 6 -

6 1 10.5 - 279 | -

7 1 10.3 - 1405 | - Lead Pipe
8 1 10.8 - 124 -

9 2 10.8 | 12.7 70 -

10 2 12.7 | 14.88 | 140 -

11 3 14.88 | 108 232 1 0.6 Flare

Total Length = 2100mm

49



20

Computational Impedance Generation and Bore Optimisation for Matlab

"TTe3ep
ozow x03 suot3idTidossp STTJF Syl =98

[p ‘1x “‘0x ‘7] = 2uo0) :aTdwexd

*UJIOH Tosseg

= ¢ ‘2U0D = g ‘ISPUTTAD = T *I0308A
Syl UuT AJI3Uus 3SITJ

55Ul Sse JIaqunu UOTIeDTITAUSPT Ue YATMm
pauTIop o0 3ISnW UOTI10SS

yoed °"UOT3D02S UYodea 3Jnoge UOTIRWIOJUT
I9Uylanjy Ioj3us 03 Iasn

oyl sidwoad usyl 3dTIOS SYL °*SUOTIDSS
JO Isqunu pue

yabusT jJuswnIlsSuTl Te303 sSoTIToads Jos( :uotidraosag

seTTy0xd

2100 InduT I0J SssAINd o0uppadWT suanisy asodang

o\

o

o

o\°

o\

o\

o

o\

o\

o

o\

o

o\

o\

o

o\

Z102/80/91 :°o3epdn 3ser]

oe ¢102/90/%C : UuoO pe31ea1d %
“e (3N oe"pPa-swsPLELT6L0S) NOOW DBTeID : AQ USIITIM %
1°Z I0jeIsusn oouepadul 1dTIos g
Ve
€T 990900900000009000000000000000000000
OO0OOO0OOOOOOOOOOOOOOOOOOOOOOOOOO©OO™O
e HOIVIANTD HONVAAANISS$%$%5%5%%5%%5%5%5%%5%%5%5%5%%%

14

(814

6T

1draog uren

8T

LT

or J0jeIouox) aduepadu]

a1
"Adoo 1ensip

:@ﬁ )M POPI[OUL IR SPOD 91} I0J 9ST JO SUOIIIAIIP pue suoljdrios
oD [ "9I9Y popn[oul jou oI SUOIJOUNJ 980} ‘OPING YSNoI e se
Jo® 0} POpULIUL ATUO ST 8p0d 9} Jo Adod pIey sIy) sy “JYSILI UMO
LYY Ul SUOIjounj se pojuawoidur o1om sossoooxd juonboiy 10 pajed
-[duwoo 10wt 9y Jo swios Ajrred 10j ng ‘weigord [[RISAO 9Y) JO
Hv::n_ o1y dn seyewr sty ], “Testuarydo 910q pue 10jRISUSS sourpaduur

¢ O3 I0J prEOm uretwl o} JO SISISUO0O odo( U@UT?O,HQ op0o 9y,

: 9po) 92anog : A xirpuaddy

20



o1

Computational Impedance Generation and Bore Optimisation for Matlab

(T+N) S

—uou IO0J SUTT STUl 2SN%

SuTIop 03 Iosn s3dwordy

||||||||||||||||||||||||||||| UOT31eSTTRIATUI———%

o~

(T'T+N)soTez = zm

! (1/T+N)soaaz

™

!(T'T+N)SOI2Zz = M

f(T'T+N) sox8z = ZT1sd
f(T'T+N) soxez = [Tsd
{(T'T+N) soIez = Tsd

s10309A 3nd3ino pue SUOTIOUNT PTIH SSTIRTITUIS

°

S butbeasayy [

S((T-N:T)S+(N:Z)S*Z+(T+N:€)S)*Gz°0 ‘(T)S] = aes

S buttredsy S
PoIP 90BIINS PuUBRY 3IOTY ‘(1)s = 0S
poIE °90kIINs =210dy f,(z."¥)x"Td = g

oT3

UoT3TuTIop pojdwoad
‘(I+N‘T) seuo = 4%
UOT309S 2100 Yydes

! (T'N“SN) UOT3ONIASUOD 8I0C = Y

oL

TL

€9

29

19

09

69

8¢

LS

9¢

q¢

ve

€9

(4

18

6V

\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ STTJOIJ JUSWNIJISUT———% 8F

Ly

97
IoquINN JURINODS Y /reuweb = epqueT v
INJT = uw
y v

[4%

ds3g Tetordsy

! (Yy/T)100TI = N ! reuweb
deqg swTLy fsdA/T = A
I7/0 = euweb ov

soTdwes
SwTl paxtnbsx Jo Isqunu Te10Le f(SIxJ3)pPUnolx = JN 6
g€

(s) uoTiyeang UOTJIRTNWTISY T = F3J i€
(s/w) DLz e AJTOOTSA punosy fLpg = D9

o3ey ordwessy {QQTyy = Sd 9

e

(ZH)

\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ siojawered TeqoTo--—-% €€
cs
1€

SUOT21D9S STTJ0Id 23I0g JO Io2qUWNNS ‘¢ = gNos

yzbueT o109 TRIOLY {G'T = T8

e

\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ ndul I9sn-—-% 48

51



52

Computational Impedance Generation and Bore Optimisation for Matlab

pex  (T-N:T)ds = pe

fgext (N:g)ds = ¢e

f(Tex (N:Z)dS)+1- = Z®

f(Tex" (N:Z)ds) = T®

L((BTS*X+T) /(T-DTsxy)) xpe - 0 = pe
L((BTS*M+T) /(2. 0MxZ . ¥-C) ) *0® = ¢®
L(BTS*+T) *F) / (Zo¥xz . do) = T®
!z/¥xdes = Qe

szojswexaed JO UOTIRTNOTRIS

‘Gz 0.°s = ds

Io3sweaed Aousnbsil Tejuswepundy ‘00T = OM

QUSTOTIIo00 butdweqgy f9°(Q = bTS

JQUSTOTII=00 burTdnony 6z 0. (0S/Td) » (oyxxg) 3xbsxdo = ds

AjTsusas {€-969LT°T = oyx

\\\\\\\\\\\\\\\\\\\\\ sIsjsweied SSOT (TPWISYJODSTA)-———%

! (Zb+1b+1) / (gb-Tb+1) - = zx ! (Zb+1b+1)/z. epquelxrz = T
Y(Ux (T+N) £BS) /IS

xz_ euwebxiaq = gb ! (yx (T+N) 4BS) /IS*Z YxZ euwebxrITe = Tb

81T

LIT

91T

STt

Vit

€1l

[8s

ITT

OTT

80T

LOT

90T

(08

66

86

L6

96

76

roIe
ooeJINS pus YLTI JO sberoavy ! (N)S*¥G 0-(T+N)S*G"T = IS
feuwreb /L5990 = 399
S3USTOTFFS0D sso0Ty ! ((Td/ (T+N)S*0S)3xbsxcc19°0) /T = FT®

SuoT3TPUuO) Axepunog

UUBWNSN 3 23I9TUDTITJ 2Y3 IONIISUOD 03 pasn za‘tx‘zb’1bg

|||||||||||||||||||||||||||||||| SUOT3TPuUOo) Axepunog——-g

TeIjusd swayosy ! (z_epquel-T)xg = (S
197 2Wwayods

S f((N:Z)aes/  ((T-N:T)S+(N:gZ)S))*z . epquelxG 0 = TS
JybTI 2WLYDS

S f((N:Z)aeS/ " ((T+N:€)S+(N:Z)S))*z epauweTxG (0 = IS

sojeTdws] LSWLYDSY

‘6'0 = (T)n
!(T’4N) soa=z = n
(esTndwr) x0309A 3ndurg

(punos butAeTd I0J) I02309A Indanpg (T ‘AN) soxsz = A

so0aTdy3nou
sxd

1e butpesl souepadwT 2I103S 0Ly ¢ (T ‘4AN) SOIsz =

€6

6

16

06

68

L8

98

a8

78

€8

z8

08

6L

8L

LL

9L

Gl

VL

€L

52



23

Computational Impedance Generation and Bore Optimisation for Matlab

(,°TT30xd =21049,)°T3T3

(z.u’(s)3abs,) TeqeTA

(,u ‘yzbusT (peTeDS) ,) T2URTX
([T+((pud)g)3abs T1-((pus)s)iabs- T 0])sTxe
L0, Y (s)3abs—’x’ >, ‘1 (s) 3abs ‘x) j301d

2INbTI

8TTJo1d @10g dz 2I0TdS

£(00002:T)3F = 3

Aousnbexgs faAN/SdAx[T-dAN:Q] = I
{((s)yabusT’1/0)odedSUI] = X%
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ S10Td-—-%
ZH¥Q¢ 03 Sbuex burjiTwily f(00002:1)Z = 2

6-.01*Z = 7

oouepadwt Induryg f((92axd)3IF)sge = 7

pus

M = M ITM = Zm
!Tsd = TTsd {1Tsd = gTIsd
SeTqTIRA PTIH JO =3epdnsg

f((1)1TSd - (1) Tsd)*sd = (u)sad
pus sdsTdylnow I0J DUTIPESI 2INSSSIJY

L9T

991

99T

79T

L((T+N) TTSd — (T+N)Tsd)*sd = (U)X
Pus MSQ#SO I07T @CHU@@H 9INSS2Id%

€91 T = (T)m
cot LM = (T+N)M
91

09T I(u)n +

651 (T)ZTsd - (Z)TTsdxz.epquwelxg + (T)TTsdx0s = (T)Tsd
8a1 ‘(T+N) ZTsdxgd + (N)TTsdxTI = (T+N)Tsd

LST

9¢1T

SuoT3TPpuo) Axepunogs

ast f((N:Z)Tsd)x"Te = (N:Z)Tsd
PSI1 I(T-N:T)zm
eSx"pe 4+ (N:Z) IMx°"¢e — (N:gZ)ZTsdx"Ze + (I+N:¢)T1Tsd
st ¥°IS + (T-N:T)TTSd* TS + (N:Z)TITsdx0Ss = (N:Z)Tsd

I¢6T

0ST

671

S¥1

LT

OPT —— ——

Sv1

1248

€vI

[4748

UOT3RTOY SATSINDODYS

!AN:T = U JOF

|||||||||||||||||||||||||||||||||| dooT UTBPN-—-%
‘(Te+1)/°T = 1I®

it

ovL

6€T

8¢T

LET

9€1

GeT

et

€eT

(438

€t

0€T

6T

8¢C1

La1

9¢1

gct

vel

€21

(44

et

oct

61T

53



o4

Computational Impedance Generation and Bore Optimisation for Matlab

peppe sjold srtFoad a10q dg - I°C :

o\

*S9SSOT

TRPWISYIODSTA TOPOW 03 POTITPOW — 0°Z

o\

Jo3eIaouen oouepadul

Jo uoTieuswaTdWT TNISSSD0ONS IST — (Q°T © SUOTSISOA

o\

D012
(TO00D) dewIoTOD

(lz*0 2°0- C2°0 T*0- T Ql])stx®
(z/TA’x) Jans

pus

! ((u)elzsylz)ursxy = (:‘u)z

! ((u)e3asyl) sooxyd = (:‘u)1h

02:T = u 103

! (0z‘Tdxz‘0)ooedsutri=e39Y3

! (dN‘Qg) soasz = zZ

L1T

91¢

g1c

vic

€1¢

(484

11¢c

01¢

60C

802

G0c

¥0¢T

€0¢

c0¢g

10T

002

661

861

L6T

961

G61

{(dN‘0z) soasz = T4
! (d)yabusT = ¥uN

oaInbT3g

oTTJ01d ox0d df 30Tds

(,20ouepadw 3ndul,)ST3T3

(,dp ‘WYOW Z,) Te2geT&

(, (zg) Aousnbeaxg,) 7ogeTX
([0T+(z)xew 0 Q00T Q])stTx®
(.a,’z “3)301d

(z'1'2)301dans

saIn) oouepoadwlI ILSUTT HUTIIOTJIS

(,oouepadwr 3ndur,)ST3IT3

(,gp ‘WyoW Z,) TeqeT&
(, (zg) Aousnbesxjg,) TogeTx

([G+(ZT)Xew G- (ZT)UuTw Q00T 0])sTX®
(,a,’zT “‘F)3o1d

(2)0T1bOoT*0T = ZT

(T“1’2)30ot1dans

oAIn) oouerpadwI OTWYITILHOT DBUTIFOTIS

oInbT3g

V61

€61

6T

16T

061

68T

88T

L8T

98T

8T

08T

6LT

8.1

LLT

9LT

o4



55

Computational Impedance Generation and Bore Optimisation for Matlab

ybTey eady

o

*[TT8 LZL LV9 G9G 18% L6E 61€ 9€C 9FT 6¥%] =

sodA]l UOT3D9S JO I9PINS

IT T T €69 0T ST 6T LF] = syead 3z

UOT3eD0T 3ead
DOT 3%
(butsn IT) e3ep souepsadwT 19baeLsy

!{[¢’1] = adA3 uor3oes

LE

g€

ve

€e

(43

1€

uoT3ouny
onT309lgo y3Tm osn 03 syead JO IoquNNg 0T = AN o
SseTgeTIeA JO I=2qUNNg {9 = AN 6¢

SUOT309S 9I0(C POITSOP JO I2qUNNg fZ = SN 8

L2

\\\\\\\\\\\\\\\\\\\\\\\ sandul AJeUuTWITSId——-% 92

gc

Ve

TTe ©SOTO €z

Ie9T0 et

yoTyM

o° oo

o

*spoy3asuw 3ndut

o\

SNOTIRA 9U3 suteTdxs

‘seTT3 Jo uotadraossp Syl pead

o\

14

(014

61

ST

LT

91

O] popuswuuodaI =2k sIasn

IeTTIweIun ‘wylTaobre syl JuswaTdwr

03 MOY uo soduaisajaad

ITOUyl JI03J Io9sn oyl sidwoad usyz 3drtaos
SUL

souepadwT 39bHLIB] SY3 puB PL3S2] O 03

syead JO

‘uoTlo09s yYdes JO SINnjeU 2yl ‘sSuoTijoss

‘yabusT JusWNIISUT [0 SsoTIToads Iasn

*SoAIND
souepadwuT

I9sn I0J soTtjyoxd o100 poajsebbns suanisyg

¢10C/80/91
¢10C/L0O/TT
(woo* TTRWDPYS3W D) YSSW DTRID

'z I9sTwrido =109g

* (pe@ITsep IT)

elep

Ioqunu oyl

Jo Isqunu

:uoT3dTIosaqg

poTITOoods—

: osodang
:o3epdn 3seT
! UO pes3esI)d
: AQ us33TIM
: 3dTI0s

o

o\

o\

o°  o° o°

o\

o o° o° o°

o

1drIog urepy

Jesruuiyd( axog

ST

Vi

€T

(48

It

(028

55



26

Computational Impedance Generation and Bore Optimisation for Matlab

(AN’

SN‘spunog-Tassag‘spunoq yibuaT ‘spunog - snipea

‘odA3 uoT3oes) a03evasusb juTod TeTITUT = dIY
sisjouered TeTITUT wopuedy T == IYVYIS IT
L((,:Tenuen = gz ‘wopuey

= T ¢sJejswered [eTATUIl,)Jautads)anduT = I9VILS

saojaweaed TeTI3TUT SU3 JO =In3eu 2yl DUTUTI=0Y

‘0 = ¥l

‘0 =11

!{syeed 1z = (DOT73Z)3Z

I0309A

souepadwT 39bIP] DUTSTTRTATUIS ¢ (0G0ZZ’T)soasz = 137
souepadwT 39bIeIy T == INANI IT

L

1910 = g ‘oouepsadwlT = T (9100 139baiel © I0 sdouepsdult

3ebie] e 38s 03 o)TIT nok prnom,)JFiutads)indut = INJNI

9I0q 39bae] I0 oAIND soueppadwT 39bIP] B DUTIOSTSSS

08

6L

LL

9L

L

VL

€L

cL

TL

0L

69

89

L9

99

g9

79

€9

(d'p ¢ = 000T) xo3swered buTpunoyy {0001 = P
uotiouny satT3oslqo 1oy buTraybremy ([T'T] = IM
(TTRd) Io3sweaed uoTjeoTTdr3iTnw doisy 46°0 = g
(sseoong) Ioj3sweaed uorTjeorTdIaTnu deigy ¢ = e

SUOT]109S USsM1D]

,dunl = sntpex psijtwiad 3ssbaeTy f100°0

o~

o~

‘It

\\\\\\\\\\\\\\\\\\\\\\\\ sanduT

Ig-o71
‘09

[g-0‘9°0] =
[6-z’1-0]

*0'G00°0] =

Teuot3do Ax

= 3TwIT dwunlC

ysoaayiy-deas

yssIyl autl

deis To9ssaqg

= de3s yabusat

dejs snIpex

spunoq-Tassaq
spunog-yaibuaT

spunog-snTpex

PUTWITOIJ———%

°

19

09

69

8¢

LS

9¢

s

ve

€g

v

v

144

(47

174

ov

6¢

8¢

56



o7

Computational Impedance Generation and Bore Optimisation for Matlab

!dTy = weaediae3s
! (3Twr T dunt
‘gN‘dTv‘edA3 uot3oes) ae3twr T dunl = dIvy
4
*

((,:2utod butaxeas andur,)Fautads)indur = dIy

sxojswexed

Tet3tut 3nduTl ATTenuens g == I¥YIS JTOST®

!{dTy = weaedaiaels
f(3TwTT dunt

‘gN‘dTy ‘sdA3 uot3oss) ae3twr T dunl = dIvy
! (AN’SN
‘spunog-Tessaq’/spunog ylbust ‘spunog snipea

‘odA3"uotT30es) x03eIasusb quTOod TeTITUT = dIY
sieojoweied TeTIJTUT WOpuRYS T == I¥VIS JT
((, s TenueR

=7 ‘wopuey=T1 (23UTOg buTaaels,)Fautads)ndur = I¥YVYIS

!, ((,rsuoTsuswIpP
2100 218bael 3ndurl,) Jautads)andur = 39bae]

210g 238bxe] buTtUTISdY

et

021

61T

8T1T

LIT

91T

STT

snTea oaT309LQO

TetaTturs ‘(aMm‘3dN‘az‘z)oung-satioslgo = [qo
! (AN‘T) ssuo0 = ysaiyly

! (91 ‘7) 3do"a03eI9Uusb oouepaduT = 7
{(T'SN'dTV ‘2dA3 uoT309s) I03RIBUSL SNTPRI = YT
! (gN‘dT1v‘sdA3 uoT3oas) I03RISUSH YlbusT = T

puTtaex uoT3oung

vIIoAT109[ o pue sonTea oouepadwT TETIJITUT DUTIRTNDOTEDS

€TT

cIT

Tt

01T

60T

80T

LOT

90T

(08

70T

sx10q 39brels Z == INANI JTISSTS €01

pus

!d1y = weaedgiaeis
f(aTwtT dum(C

‘gN‘dTv‘edA3 uot3oes) ae3twr T dunl = dIvy

,((,:2uTtod butazeqs 3ndurl,) Fautads)andur = dIy

siolsweaed

TetatuT andut ATTeNUBNS Z == I¥VIS JFTosTe

!d1y = wexedgiaeas
f(3Twt T dwnk

‘SN‘dTvy ‘edA3 uoT30oss) as3TwrT dunl = d1y

201

10T

00T

66

86

L6

96

6

76

€6

26

16

06

68

88

L8

98

a8

78

€8

z8

8

o7



o0
L0

99T — — o SvT
.M OT7] 9ot 44
=
Ma ¥9T pus €7t
N Y e [4a
QS
= WHITYODTY NIVW-—-% €91 snfesn
I -
S S onT3oelgo TeT3Turg f(3M‘¥dN‘3Z‘Z) 3oungsaTioslgo = [qo wr
e
,.m |||||||||||||||||||||||||||||||||||||||||||||||||||||| o 29T 0¥
2
g 191 J02109A pToysearyl deoigse f3sbael - dI¥ = ysaayl 6eT
c
= 091 {(az)yabusT = 4N €T
Q ,
© ! (AN) @A = (g est LeT
DW XTIJew UOTIDSIT(JY 89t 9eT
s 18T ! (41 '11) 3do-103evIousb oourpaduT = 17 cet
m ! (AN‘SN‘dea3s Tossaqg’‘dejs snTpea ! (T1L'’SN‘39bael ‘odA3"UuoT309s) J03RILDUSL SNTIPRI = YL PeT
m ‘deas yibusT ‘edA3 UOTIDSS) I03rIDUSL dols = 29z2Tsdo]s 9T ! (sN’39bae1 ‘odA3 uoT3nas) I03vIaUSL YlbusT = TIL €eT
S
= UOTSUSWIP Ydes I0J S9zTs dolgy ¢St senTea oouepadwT 19bIP] DUIILTNOTEIDS zeT
=
M va1 €1
muc ! (z’:)spunoq = Toddn et ! (g1 “71) 3do"x03ea0USbh ooUurpPLOdUT = 7 0€1
8 f(1’:)spunoq = I2OMOT &St ! (T'’sN‘dTy‘edA3 uoT3oes) I03vIauab snIped = ¥II 621
n 4 4 4 — 4 — 4 4 4 - -
lw ! (AN‘SN‘spunoq-Tessad‘spunoq snipex ! (sN’dT1y‘edA3 uoT3oses) x03easausb yibusT = T 82T
W ‘spunoq yibusT ‘odA3 UOTIDSS) I01IRISUSH SPUNOQ = SPUNOQ IST putaea uotiouny saT30slgo
.M spunog JIamoT pue Iaddnsg ost pue sonTeA odourpadwWT TETATUT DUTI3IBTNOTEDS 121
.W 671 9C1
..m o ‘pa/ ((paxdTy) )punox = divy 41
,.M \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ SsIojsweied PoATISd-———9 87T ve1
m. Lyt pus £et
ﬂOu orT zel

58



29

Computational Impedance Generation and Bore Optimisation for Matlab

‘{0 = (CC)3se3 spunoq

9sT®
‘T = (CC)3ss3 spunoq
(CC) asmot

> (CO)dry | (CL)xeddn < (CL)dry  IT

AN:T = CC z03
! (AN‘T)soaez = 13so93 spunodg
spunog SpTsS3ino ST ubIsop mau JT DUTOLUYD---%

I0309A pToysaayl burtiepdn
g (TT)dwe3 dIv -

3 (TT) A1V = (TT)yseIyl

SsenTea SNIpeI MU DPUTIEBTNOTRDY

! (T'’sN’dTy‘e2dA3 UuoT30as) I03vISaUSH SNTIPRI = ¥
upbrsep mau JO yibusT HbuTlBINOTRD

o ! (sN‘d1vy‘edA3 uoT3oes) I03rIsusb ylbusl = I
pToys=Iy3

Ton0o sdunl Aue burtiotalssaygs ! (3TwrT dwunl

‘gN‘dTvY ‘edA3 uoT3oss) as3TwrT dunl = dTvy

90¢

G0¢

70c

€02

2c0c

102

002

661

86T

L6T

961

G61

€61

Z61

161

061

68T

88T

L8T

981

G8T

burtpunoys ‘pa/ ((paxdlV¥))punox = dlvy ¥8T

€8T
ubtssp s210qg

mau butaoTdxygy f(TT’:)dx(TT)T + dIv = dIv¥ 28T
eydTe

JO onTeA uaIIno burtxolsy {diy = dws3 dIvy 181

08T

AN:T = TT JI0O3J 6LT

8LT

UOT3D0SITP Udks UT SINTTIRJ pue Sso00nS

TT3un dooT 2yl 3TX® 13,U0M% (X)Tawnu # (X)zuu STTUMm LL1
9LT
gLt

‘ozTsdels = T wir
sdels

TnIisso00ns JO wns PToYy 03 JI0309A% ¢ (AN'T)SO0I9Z = PPqUET €1
UOT2109ITP yodes UT

SINTTeJ/sse00ns JO oexl deox 03 I0309A% ! (AN'Z) SOIDzZ=X Til

TLT

0LT
eTIDQTIO
UOTIPUTWISDLS USaIYl 2WI3 > 003 _ ysoaayay-deas

< ((T) sge) xeu _ ysoaayi dels < ((yssayl)sge)xew oTTUM 69T

891

59



60

Computational Impedance Generation and Bore Optimisation for Matlab

(UOT3DSITP Udea UT TTIBJ PUB SS200Ng

T ST X uT Ax3us AI9Ad

TT23un butuuna sdeoy sTyl {dooT uorieaoTdxs JO PU-———%
pus
pus
Ttey butbbory T = (TT‘2)X
ubtsop

PTO 03 butaasasyy f{dwel divy = dIV
UOT09ITP

butsasasx » 2zTs dols bursesaiadsp

feanTTeds (TT)T *» d- = (TT)T
asTo
ssooons burbboTy 41 = (TT‘I)X

JuswedoeTdsTp Te1021 butiepdn

$ Y(TT)T + (TT)epquwel = (TT)epquet

drv
(,:ubtsaqg psaoadur,)dsTp

"oT)

(4514

16c

0¢¢c

67C

8V¢C

Lve

9T

5144

vve

€ve

[444

e

ove

6€C

8€T

L8T

9€T

Gec

vee

€€T

(454

T€C

!17Lgo = Lqo

9zTs do3s bursesaaourt

fsseoongy (TT)T x & = (TT)T

ubTsop mau JO 2INTTIERI IO SS200NS HPUTUTWISDID(———

tgo > 17 Cgo 7T

4

(3m’3dN‘37 ‘uz) 3oung satiosalqo = 1°Lgo
! (g“71) 3do-z03eIouUusb oourpaduT = UZ

pbutiea pue souepaduT

MU buTrjeTnoTed f{oTgeidsdor UbISaQy

Spunoq spTSINo

fJur = 17CqO0
!sTge3deooeun ubrsags

| 0 < (3se37spunoq)zu

pus

pus

osTo

u 3T

pus

o

°

0€T

(144

8C¢

L2t

9¢¢

Gcc

vee

€3C

(444

1ce

02c

61¢C

81¢

L1T

91¢

Gg1c

vic

€1¢

(484

112

012

60T

802

L02

60



61

Computational Impedance Generation and Bore Optimisation for Matlab

putil0Tds

butijords

pus

osTo

uinisx

siTns=sa

(I ‘9L 'TL’T*9'37 ‘uz) 301d-3do

2012

d1v
(,:ubtsaq pestwrido,)dsTp

weredliels
(, :sas3sweaedg butixels,)dsIp
(,iyd23en 30°93I94,)dsTp

0 == [q0 3TesT®

uInisi

saTnsaI

(I ‘9L 'TL’T*9/37 ‘uz) 301d-3do

2012

10€

00¢

66T

862

L6T

96¢C

G6C

76C

€6¢

¢6C

162

062

68¢T

88¢T

L8T

98¢

G8¢

v8¢

€8¢

T8¢

I8¢

08¢

6.LC

8LT

LLT

d1v
(,:ubtsaq pestwrido,)dsTp

weIedliels
(, :saIs3sweaed TeTITUI,)dSIpP
(133K
PTOUSSIUL SWIL :Po31euTwiIa] WYlTIobTV,)dsTp

UseIyil owrl < D003 JTSSTO

uInisx
saTnsaI

burjzords (MI‘¥I‘TIL’T1‘9’3z‘uz)3ord 3do

2012

d1v
(,:ubTtsaq pesturido,)dsTp

weIedliiels
(, :sIs3sweaeg TeTITUI,)dSTIpP

(,PTOUS=IY3l
MOTSg 92zTs doils :peleuTwiIsl WUITIOLTY,)dsTIp

ysaayiydeis > ((T)sqe)xew JIT

PTIIS3TIO UOTJBRUTWIS] WYITIODTP-DPIWN-——%

9.C

GLT

v.ie

€LT

cLT

L2

0LT

692

L9

99¢

S92

792

€92

29¢

19¢

092

65T

8¢¢C

LST

96¢

Gqge

1414

€8¢

61



62

Computational Impedance Generation and Bore Optimisation for Matlab

JOJ3rUTWOUSP OI=2Z

pToA® O3 SUM@Q B — AN JOZT COHM@WHH@QO@OQMHO I=2WUTeds

pus

pus

{I03eUTWOUSP/ "JI03RIBWNU = (TT’:)Q

4

((TT/:)gT)waou » ((T-TT‘:)JTI)WIOU = IOJRUTWOUSP
f(z.((TT’:)a1)waou x

) - (T-TT) epqueT) =

(I-TT’:)=1038570@

((TT’:)aT = IojEBISWNU

osT®
{(T-TT’:)®3103870d- = (TT':)d
SSBD JOJRUTWOUSP 0I8Z 9Uj DUTPTOAVS

{0 == (I-TT)epqwel JIT

I-AN:Z =
T-AN 03 dn UuOT3BeSTTRUODOYIIO ISWTEJY

TT I03

0ge

67¢

8V¢

Lve

Ive

ave

Ve

£ve

(423

e

ove

6€¢

8¢€¢

PASS

9€¢€

Gee

vee

€ee

cee

1ee

0ge

62¢

8¢¢

LTe

ssoooaxd APTWUYDSS-weIsn @CHWS JI0109A

UOT309ITP 23saTdAs Y ((T’:)gT)waou / (T*:)aT = (T':)d
SI0309A UOTJDDITP MaU DPUTIBTNOTRD———%
pus
pus
L) a o+ () epqueT + (TTY:)QaT = (TT':)AT
AN:TT = 3 JIOF
AN:T = TT IOJ
xTx3eu deis Ut BUTTITI-—-%
XTIJeuw 20UrlSTP DbuTIOlSe g = 2I103S° 0
xTaxlew dsigsy f (AN) SOI9zZ = JT
STquesId——-%
\\\\\\\\\\\\\\\\\\\\\\\\\\\\ oberis UOTARSTTRUODLOUIIO-——%
pus

9ce

149

vece

€ce

(443

1ce

0ce

61¢

81¢

L1€

91¢€

q1e

vie

€1¢e

c1e

ite

ore

60¢

80¢

Lo€

90¢€

G0¢

70¢€

€0¢

c0e

62



63

Computational Impedance Generation and Bore Optimisation for Matlab

poppe Iojsweaed DHuIpunoy - 7°Z
poppe yoied uotiossdunl - ¢-7
peppe sxojriausb
ds3s pue spunoq ‘syjbusT ‘sniped - Z°'Z
‘poppe yodjed ( = (AN)epquel - T°¢Z
*s3o1d eonpoxd 03 POTITIPOW - 0°C
I9STWTAdO 2109

Jo uoTjleusweTdWT TNISSS00NS 3IST — (Q°T : SUOTSISA

o

o\

o°  o°

o

(4T ‘917111937 ‘uz) 307d 3do
s3Tnsey 2A0Td---%

drtvy

c6¢

16€

06¢

68¢

88¢

L8€

98¢

Ga8¢

v8e

€8¢

8¢

18¢

08¢

6.L€

8.L¢

(,:ubtsaqg pestwtldo,)dsTp 248

9LE

weIegilirels gL

(, :sas3sweieg TeT3ITUIl,)dSTp ¥ie

63

(,232W PToOYSaIYl ‘peleuTwiIs] WUITIODTY,)dSTp eLe
D017 zTLe

TLe

pus oL

69¢€

(,232Tdwoo UuoOT3ESTTRUOLOYIIQD, ) dSTP 89

L9¢€

pus 99¢

G9¢€

{J0jeUTWOUSP/ *J10lRIBWNU = (AN’:)Q $9€

€9€

I ((aN‘:)gT)wxou x ((T—-AN‘:)JT)WIOU = JIOJRUTWOUSP z9e
fz. ((aN‘:)@T)waou » (T-AN‘:)

21035 d) - ((AN’:)dT * (I—-AN)epqweT) = JoleIrswnu 19€

09¢

osTo 69€

8gE

! (T-aN‘:)21038570- = (AN':)Q Lg€

9¢¢€

0 == (I-AN)epqueT JTSST® gee

vee

! (AN‘:)2I103s™d = (AN‘:)A €ge

zse

0 == (AN)®epqueT JT ge



Bibliography

1]

2]

Braden, A.C.P (2006) Bore Optimisation and Impedance Modelling of Brass
Musical Instruments PhD Thesis, University of Edinburgh.

Braden, A.C.P (2005) Optimisation Techniques for Solving Design Prob-
lems in Modern Trombones (Proceedings of Forum Acusticum, Budapest,
pp.2569-2572)

Noreland, D.J.O (2003) A Gradient Based Optimisation Algorithm for the
Design of Brass-Wind Instruments PhD Thesis, Department of Information

Technology, Uppsala University.

Noreland, D.J.O.; Udawalpola, M.R.; Berggren, M.O. (2010) A Hybrid
Scheme for Bore Design Optimization of a Brass Instrument Journal of the
Acoustical Society of America, Vol 128, No. 3 (Sept. 2010) pp.1391-1400

Kausel, W (1999) Computer Optimization of Brass Wind Instruments Insti-
tut fiir Wiener Klangstil, Vienna, Austria. Available at: http://iwk.mdw.

ac.at/mitarbeiter/english/wk/paper’20diderot.pdf [accessed 27 June
2012]

Amir, N.; Shimony, U.; Rosenhouse, G (1995) A Discrete Model for Tubu-
lar Acoustic Systems with Varying Cross Section - The Direct and Inverse
Problems Acustica, Vol 81, No.5 (Sept. 1995) pp.450-462

Campbell, Murray; Greated, Clive (1987) The Musician’s Guide to Acoustics
(Ch9: Brass Instruments, pp.303-366). Cambridge Unversity Press

Campbell, Murray (1996) Cornett Acoustics: Some Ezxperimental Studies
The Galpin Society Journal, Vol 49 (Mar. 1996) pp.180-196. Available at:
http://www.jstor.org/stable/842398 [accessed 23 March 2012]

Fletcher, Neville H.; Rossing, Thomas D. (1991) The Physics of Musical
Instruments (Chl4: Lip Driven Brass Instruments, pp.365-375, 383-384).
Cambridge University Press

64


http://iwk.mdw.ac.at/mitarbeiter/english/wk/paper%20diderot.pdf
http://iwk.mdw.ac.at/mitarbeiter/english/wk/paper%20diderot.pdf
http://www.jstor.org/stable/842398

Computational Impedance Generation and Bore Optimisation for Matlab 65

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

Wolfe, Joe. (2012) What is Acoustic Impedance? (Music Acoustics, Univer-
sity New South Wales). Available at: http://www.phys.unsw.edu.au/jw/
z.html [accessed 10 March 2012]

Braden, Alistair C.P; Newton, Michael J; Campbell, Murray (2005) Opti-

masing the Harmonicity of Trombones. University of Edinburgh

Bilbao, Stefan (2009) Numerical Sound Synthesis (Chb: Grid functions and
finite difference operators in 1D, pp.93-105; Ch9: Acoustic Tubes, pp.249-
278). John Wiley & Sons, Ltd

Bilbao, Stefan (2011) Time Domain Simulation of Brass Instruments
University of Edinburgh. Available at: http://edinburgh.academia.edu/
StefanBilbao/Papers/1014125/Time_Domain_Simulation_of_Brass_
Instruments [accessed 14 Apr 2012]

Webster, A.G (1919) Acoustical impedance, and the theory of horns and the
phonograph (Proceedings of the National Academy of Sciences of the United
States of America, pp.275-282)

Silva, F.; Guillemain, P.; Kergomard, B.; Mallaroni, B.; Norris, A. (2009)
Approzimation formulae for the acoustic radiation impedance of a cylindrical
pope (Journal of Sound and Vibration, Vol 322, pp.255-263)

Zhilin Li (2001) Finite Difference Methods Basics (Computational Mathe-
matics: Models, Methods and Analysis.) Center for Research in Scientific
Computation, North Carolina State University. Available at: http://www4.
ncsu.edu/~zhilin/TEACHING/MA402/notesl.pdf [accessed 31 July 2012

Wogram, Klaus (1972) The Summation Principle (A Contribution to the
Measurement of the Intonation of Brass Instruments, Ch 3.2.3). Carolo-

Wilhelmina Technical University of Braunschweig

Keefe, Douglas (1984) Acoustical wave propagation in cylindrical ducts:
Transmission line parameter approximations for isothermal and nonisother-
mal boundary conditions Journal of the Acoustical Society of America, Vol
75, no. 1, pp.58-62.

Meek, C (2012) An Initial Study into the Acoustics of the Serpent, MSc
mini-project, University of Edinburgh.

Backus, J (1976) Input impedance curves for the brass instruments J. Acoust.
Soc America, Vol 60, No. 2 pp.470-480.

65


http://www.phys.unsw.edu.au/jw/z.html
http://www.phys.unsw.edu.au/jw/z.html
http://edinburgh.academia.edu/StefanBilbao/Papers/1014125/Time_Domain_Simulation_of_Brass_Instruments
http://edinburgh.academia.edu/StefanBilbao/Papers/1014125/Time_Domain_Simulation_of_Brass_Instruments
http://edinburgh.academia.edu/StefanBilbao/Papers/1014125/Time_Domain_Simulation_of_Brass_Instruments
http://www4.ncsu.edu/~zhilin/TEACHING/MA402/notes1.pdf
http://www4.ncsu.edu/~zhilin/TEACHING/MA402/notes1.pdf

Computational Impedance Generation and Bore Optimisation for Matlab 66

[21]

22]

[25]

[26]

28]

[29]

Gondzio, Jacek (2012) Convex Optimisation, from MATH11044 Practical &
Large Scale Optimisation. School of Mathematics, Edinburgh University.

Rosenbrock, H.H (1960) An automatic method for finding the greatest or
least value of a function The Computer Journal, Vol.4, pp.175-184.

Posik, Petr (2001) Rosenbrock’s Algorithm: Should We Reset the Multipliers
After Each Coordinate System Update? Dept. of Cybernetics, Czech Techni-
cal University, Prague. Available at: http://labe.felk.cvut.cz/~posik/
papers/Rosenbrock/RosOrigVsRosMod. pdf [accessed 20 July 2012]

Palmer, J.R (1969) An improved procedure for orthogonalising the search
vectors in Rosenbrock’s and Swann’s direct search optimisation methods The
Computer Jorunal, Vol.12, No.1, pp.69-71.

Weisstein, Eric W. (2012) Gram-Schmidt Orthonormalization From
MathWorld-A Wolfram Web Resource. Available at: http://mathworld.

wolfram.com/Gram-SchmidtOrthonormalization.html [accessed 29 July
2012]

Weisstein, Eric W. (2012) Gaussian Function From MathWorld-A Wol-
fram Web Resource. Available at: http://mathworld.wolfram.com/
GaussianFunction.html [accessed 30 July 2012]

Author Unknown. (2007) Rosenbrock Method Available at: http://hi.
baidu.com/fwso/blog/item/25bc2b3f7b3cedee54e72396 . html [accessed
23 July 2012]

Efstathiou, C. E. Signal Smoothing Algorithms Department of Chemistry,
University of Athens. Available at: http://www.chem.uoa.gr/applets/
appletsmooth/appl_smooth2.html [accessed 8 Aug 2012]

Kirkpatrick, S. Gelatt, C. D., Vecchi, M. P. (1983) Optimization by Simulated
Annealing Science, Vol.220, No.4598, pp.671-680. Available at: http://www.
fisica.uniud.it/~ercolessi/MC/kgv1983.pdf [accessed 8 Aug 2012]

Kausel, W. Brass Instrument Analysis System. http://www.bias.at

‘Levels’ € ‘Fourier’ Analysis Software Resources for Acoustics, Univer-
sity of Edinburgh. Available at: http://www2.ph.ed.ac.uk/acoustics/

teaching/acoustics/index.html

66


http://labe.felk.cvut.cz/~posik/papers/Rosenbrock/RosOrigVsRosMod.pdf
http://labe.felk.cvut.cz/~posik/papers/Rosenbrock/RosOrigVsRosMod.pdf
http://mathworld.wolfram.com/Gram-SchmidtOrthonormalization.html
http://mathworld.wolfram.com/Gram-SchmidtOrthonormalization.html
http://mathworld.wolfram.com/GaussianFunction.html
http://mathworld.wolfram.com/GaussianFunction.html
http://hi.baidu.com/fwso/blog/item/25bc2b3f7b3ce4ee54e72396.html
http://hi.baidu.com/fwso/blog/item/25bc2b3f7b3ce4ee54e72396.html
http://www.chem.uoa.gr/applets/appletsmooth/appl_smooth2.html
http://www.chem.uoa.gr/applets/appletsmooth/appl_smooth2.html
http://www.fisica.uniud.it/~ercolessi/MC/kgv1983.pdf
http://www.fisica.uniud.it/~ercolessi/MC/kgv1983.pdf
http://www.bias.at
http://www2.ph.ed.ac.uk/acoustics/teaching/acoustics/index.html
http://www2.ph.ed.ac.uk/acoustics/teaching/acoustics/index.html

	Abstract
	Contents
	Impedance Generation
	Initial Discussion and Theory
	Input Impedance
	Webster's Equation
	Boundary Conditions

	Modelling Impedance
	Finite Difference Schemes
	Scheme for Webster's Equation
	Defining the Bore Profile
	Implementation of Impedance Generator


	Experiment and Analysis of Impedance Generator
	Experimental and Analytical Tools
	BIAS
	Equivalent Fundamental Pitch
	Sum Function

	Accuracy Tests
	Test 1: Simple Cylinder
	Test 2: A More Complicated Bore Profile
	Further Comments

	Practical Uses
	Application 1: Prediction of Notes with the Sum Function
	Application 2: Bore Alteration


	Bore Optimisation
	Initial Discussion
	Rosenbrock Algorithm
	Outline

	Objective Function
	Implementation of Bore Optimiser

	Experiment and Analysis of the Bore Optimiser
	Accuracy & Performance Tests
	Test 1: Optimising Single Sections
	Test 2: A More Challenging Optimisation
	Further Comments

	Difficulties & Improvements
	Sources of Difficulty
	Improvements/Future Work

	Practical Uses
	Application: Shifting Pitch-Standard
	Further Applications


	Conclusions & Appendices

