
Computational Impedance
Generation and Bore

Optimisation for Matlab

Craig Meek

MSc Acoustics & Music Technology

University of Edinburgh

s0791739

Summer 2012



Abstract

This project focuses on the combination of input impedance generation and opti-

misation techniques to construct code for Matlab that will produce an impedance

curve for a pre-specified bore profile, or suggest a bore profile to fit a pre-specified

impedance curve. These two separate but related problems will be referred to as

‘impedance generation’ and ‘bore optimisation’ respectively.

Impedance generation is achieved by modelling wave propagation using fi-

nite different schemes and devising a method for reconstructing brass instrument

shapes. Bore optimisation is performed using the Rosenbrock method along with

a suitably defined objective function to rate how closely designs match the target.

The code for both problems is subject to a series of tests to determine accuracy

and performance. Following this, improvements are made and suggestions put

forward for future work. Finally, applications of the system are outlined in each

case.

ii



Acknowledgements

This project would not have been possible without the assistance and willing

input of many current and previous members of the University of Edinburgh’s

Acoustics department. Gratitude is therefore due to a number of people.

First and foremost, thanks go to Mike Newton for supervising this project,

arranging regular meetings and generally helping me mull over the multitude

of ideas and offshoots that came out of the basic idea of this project. Alistair

Braden, the author of a comprehensive PhD project on a similar topic, willingly

provided guidance and expertise on several occasions. Stefan Bilbao regularly

provided valuable information on finite difference schemes, optimisation theory

and lots of other general bits and pieces. Thanks also go to Murray Campbell

for introducing me to the topic of impedance analysis and providing his Serpent

for research, Arnold Myers for providing detailed bore measurements, and Jacek

Gondzio for his excellent and engaging lectures on optimisation theory.

Finally, I thank my classmates for helping create an engaging and enjoyable

atmosphere in which to study this masters course.

iii



Contents

Abstract ii

Contents v

1 Impedance Generation 3

1.1 Initial Discussion and Theory . . . . . . . . . . . . . . . . . . . . 3

1.2 Input Impedance . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3 Webster’s Equation . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.3.1 Boundary Conditions . . . . . . . . . . . . . . . . . . . . . 6

1.4 Modelling Impedance . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.4.1 Finite Difference Schemes . . . . . . . . . . . . . . . . . . 7

1.4.2 Scheme for Webster’s Equation . . . . . . . . . . . . . . . 7

1.4.3 Defining the Bore Profile . . . . . . . . . . . . . . . . . . . 9

1.4.4 Implementation of Impedance Generator . . . . . . . . . . 11

2 Experiment and Analysis of Impedance Generator 12

2.1 Experimental and Analytical Tools . . . . . . . . . . . . . . . . . 12

2.1.1 BIAS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.1.2 Equivalent Fundamental Pitch . . . . . . . . . . . . . . . . 12

2.1.3 Sum Function . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2 Accuracy Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.2.1 Test 1: Simple Cylinder . . . . . . . . . . . . . . . . . . . 14

2.2.2 Test 2: A More Complicated Bore Profile . . . . . . . . . . 16

2.2.3 Further Comments . . . . . . . . . . . . . . . . . . . . . . 19

2.3 Practical Uses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.3.1 Application 1: Prediction of Notes with the Sum Function 20

2.3.2 Application 2: Bore Alteration . . . . . . . . . . . . . . . . 22

3 Bore Optimisation 24

3.1 Initial Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

iv



Computational Impedance Generation and Bore Optimisation for Matlab v

3.2 Rosenbrock Algorithm . . . . . . . . . . . . . . . . . . . . . . . . 25

3.2.1 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.3 Objective Function . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.4 Implementation of Bore Optimiser . . . . . . . . . . . . . . . . . . 31

4 Experiment and Analysis of the Bore Optimiser 33

4.1 Accuracy & Performance Tests . . . . . . . . . . . . . . . . . . . 33

4.1.1 Test 1: Optimising Single Sections . . . . . . . . . . . . . 33

4.1.2 Test 2: A More Challenging Optimisation . . . . . . . . . 36

4.1.3 Further Comments . . . . . . . . . . . . . . . . . . . . . . 39

4.2 Difficulties & Improvements . . . . . . . . . . . . . . . . . . . . . 39

4.2.1 Sources of Difficulty . . . . . . . . . . . . . . . . . . . . . 40

4.2.2 Improvements/Future Work . . . . . . . . . . . . . . . . . 41

4.3 Practical Uses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.3.1 Application: Shifting Pitch-Standard . . . . . . . . . . . . 43

4.3.2 Further Applications . . . . . . . . . . . . . . . . . . . . . 45

5 Conclusions & Appendices 46

v



Introduction

Motivation

The study and computational modelling of the acoustical behaviour in an instru-

ment bore has become a well-established undertaking in the previous two decades,

with a notable motivating factor being to provide assistance in the construction

of quality musical instruments. Studying the impedance from a pre-specified bore

gives useful indications of the pitch, stability and timbre of sounded notes. The

reverse problem - finding a bore profile to fit a pre-specified set of impedance

values - allows the user to set a desired output and request a suitable bore recon-

struction.

Combining these two methods can provide a useful tool for brass instrument

design and construction. While crafting a top class instrument is regarded as an

art in itself learnt over many years of practice, instrument modelling and bore

reconstruction can still be a valuable supplement in the design process. Many

different models can be tested and optimised computationally, saving the need

for construction of time and money consuming prototypes.

Many authors have produced work at least partly driven by this motivation,

including Braden ([1, 2]), Norland ([3, 4]),Kausel ([5]) and Amir ([6]). Conse-

quently, the source codes are not always widely available, are written in different

coding languages, or are focused on running for longer periods of time in order

to achieve pinpoint accuracy.

One of the main motivations of this project is therefore not necessarily to

create a meticulously accurate tool for manufacturers, but instead to build a

relatively more accessible and user-friendly impedance analysis and optimisa-

tion package. It is intended to be geared towards students, in the mould of the

‘Fourier’ and ‘Levels’ Matlab programmes ([31]) developed at the University of

Edinburgh to provide an easy system to analyse data and enhance learning. Fur-

ther motivation comes from the author’s study of both finite difference schemes

and optimisation techniques throughout the year, accompanied by the desire to

1



Computational Impedance Generation and Bore Optimisation for Matlab 2

apply the acquired knowledge on a larger and practical scale.

Project Aims

Following the previous discussion, it is necessary to provide a number of aims of

this project:

� To develop Matlab code to find the impedance curve for a specified bore

profile, and to optimise a bore profile for a specified impedance curve.

� To rigourously test each case and review accuracy and efficiency.

� To suggest improvements, further work and applications for each case.

� To have the final code accessible so that it may be built on and improved

by anyone at a later date.

Summary

This project is split into four distinct sections, with the first half covering the

forward problem and the second half covering the reverse problem. Chapter 1

will cover the theory of wave propagation in tubes, leading the way to the intro-

duction of Webster’s equation, finite difference schemes and the construction of

an ‘impedance generator ’. In Chapter 2, the computational model is put through

a series of rigorous accuracy tests. The results are then analysed and suggestions

are made for improvements. Following this, some practical uses of the system are

outlined. Chapter 3 introduces optimisation techniques to deal with the ‘reverse

problem’, and covers the theory of the specific algorithm used with the ‘bore op-

timiser ’. In Chapter 4, the optimiser is put through a series of tests and the

results discussed. Challenges in implementation are highlighted, improvements

are suggested and any possible future work is detailed. The full code is included

digitally, and a hard copy of the main scripts is presented in the appendix.

2



Chapter 1

Impedance Generation

As already mentioned, studying the input impedance enables us to go a long

way in predicting the particular sound of an instrument in terms of intonation,

stability and to a lesser extent, timbre. Constructing efficient and accurate code

that returns the impedance from a pre-specified bore will also be key to later

implementing the reverse problem in Chapter 3, where a constant stream of bore

designs need to be tested and their impedance values rated against a target.

1.1 Initial Discussion and Theory

Before going any further, it is worth briefly refreshing the theory of acoustical

behaviour in tubes. More specifically, the theory in this project is based on that

of lip-driven brass instruments.

One main characteristic of brass instruments is their ‘cup-shaped’ mouth-

pieces, necessitating the use of a lip-reed mechanism. In a simplified sense, notes

are sounded by interaction between lip vibrations and the resonances of the air

column in the main instrument bore. The column may resonate at several differ-

ent frequencies for any one fingering or valve configuration, and it is the spacing,

width and magnitude that govern the overall properties of the emitted sound.

These resonances correspond to the natural modes of vibration of the air column

contained in the tube.[7, 9]

To produce a note, the player sets their lips to vibrate at a particular fre-

quency and injects an oscillatory flow into the main bore, which induces vibra-

tions into the air column. These vibrations build up, causing the lips to react

to the increasing pressure fluctuations and ‘lock’ into a stable vibration with the

air column, producing standing waves. It is the resonances feeding off the energy

of the air flow and powering other modes that most influences what note will be

3



Computational Impedance Generation and Bore Optimisation for Matlab 4

sounded.[1, 7] Given the correct frequency and phase relationships, several modes

can feed off the components of the injected air flow to produce a strong resultant

note.[8]

Essentially, resonances in the air column that form an approximate harmonic

series can be used to set up a stable, cooperative regime of oscillation. The more

harmonically related peaks that support a fundamental, the more stable and easy

to play the sounded note will be. In reality, the resonant body of brass instru-

ments causes these ideal modes of vibration to deviate, producing overtones and

a degree of inharmonicity. This is counteracted by ‘mode locking’, which causes

the overtones to lock precisely onto integer multiples of the fundamental pitch,

and hence have the desired phase relationship despite being slightly different to

the natural resonances points of the instrument.[9] Taking this all into account,

it follows that in searching for patterns of harmonically related peaks, one can

predict what notes a brass instrument may play.

1.2 Input Impedance

To build an impedance generator, it is of course necessary to first define input

impedance. As the chapter title suggests, it is a key component in this part of the

project. Input impedance, denoted as Z, is a frequency dependent value defined

as follows:[7, 9]

Z =
p

vS
(1.1)

where

p = Acoustic Pressure, Pa

v = Velocity, m/s

S = Surface Area, m2

The quantity vS is commonly known as Volume Velocity or Acoustic Volume

Flow. The units of Z are hence Pa
m3/s

= Pa.s
m3 , known as an Acoustic Ohm. Readings

are taken at a point close the mouthpiece.[9]

Acoustic impedance measures the pressure level generated by some air vibra-

tion at a particular frequency.[10] Informally, it can be described as an ‘acoustical

fingerprint’, as using the theory from section 1.1 allows much information about

the behaviour of an instrument to be extracted from its impedance plot. Peaks

4



Computational Impedance Generation and Bore Optimisation for Matlab 5

on the plots correspond to resonances, the larger the magnitude naturally imply-

ing a stronger response. As already highlighted, many large harmonically related

peaks will sustain a cooperative regime of oscillation and result in a stable tone

being sounded. On a side note, the excitation frequency of the lips need not

correspond with a large impedance peak; it is the extent to which a particular

frequency can combine with other strong resonances that determines the overall

quality and ease of sounding a particular note. This is a common feature of brass

instruments.[11]

1.3 Webster’s Equation

As the goal of this section is to create a computational impedance generator, it

will be essential to model wave propagation in a tube, from which the relevant

quantities may be used to calculate impedance. In tubes, the length scale in

one coordinate is significantly larger than that in the other coordinates, allowing

the dynamics of the model to be reduced to one dimension. In other words, we

are assuming that no transverse modes exist and hence only working along the

x-axis.[12] The equation to be used is called Webster’s equation. The derivation

will not be covered in this project, but a thorough description can be found in

[1], or from the original paper [14]. Given a discretized bore profile, Webster’s

equation is defined as follows:

SΨtt = γ2(SΨx)x (1.2)

where

Ψ = Velocity Potential

S(x) = Cross sectional area of tube at x

γ = c/L (speed of sound in air/length of tube)

This is a scaled form of Webster’s equation, where the x coordinates have

been normalised to unit length and the cross sectional area scaled by a reference

surface area, usually taken to be the left extremity of the tube. The pressure and

volume velocity can be derived from Ψ as follows:

p = Ψt, u = −SΨx (1.3)

The equation as stated above assumes that there are no viscothermal losses.

This will be addressed later on, but for the time being we will work with the

5



Computational Impedance Generation and Bore Optimisation for Matlab 6

lossless version to maintain clarity in how it is modelled computationally. Other

assumptions include that the instrument bore has no curvature, the cross section

is exactly circular and the wave propagation is strictly planar.

1.3.1 Boundary Conditions

To ensure the computational model works effectively, well-defined boundary con-

ditions are required. The left end of the tube is effectively treated as being closed

and coupled to an excitation mechanism to be added later. A typical zero velocity

Neumann condition is sufficient - it can be expressed as Ψx(0, t) = 0. Since the

right end of the tube will be radiating sound, it is possible to account for these

energy losses by using a Dirichlet type condition with loss terms. The form we

will use is Ψx(1, t) = - α1Ψt - α2Ψ(1, t).[12] The two α terms are dependent on

the tube parameters. Suitable values are outlined in [12] and [15].

1.4 Modelling Impedance

Instead of modelling using the more common transmission line approach, this

project uses finite difference methods. This is in contrast to much of the other

literature that deals with computational impedance generation, possibly with

the exception of [4] where a mix of the two methods is used. Finite difference

methods offer potential advantages over digital waveguides in various areas. The

main advantage is that they provide a clearer insight into the physical workings of

a system. Waveguides can be more successful in producing synthesised sound, but

since the overriding motivation is to study acoustical behaviour, this declines in

importance. Historically, use of numerical methods has come at a computational

cost, but the speed and quality of modern computers means that this is becoming

much less of a concern.

Another advantage (or at least, difference) that has emerged during applica-

tion of finite difference methods is that they negate the use of sectional analysis

- that is, while the specified bore shape may be defined in terms of many sec-

tions, the final impedance calculations treat it as a whole. This is in contrast to

waveguide methods, that calculate impedances for a series of transmission ma-

tricies corresponding to each individual section of the horn. It could be argued

that once the fundamentals of finite differences are understood, it can become a

more straightforward method of deriving impedance. If nothing else, taking this

approach is simply a fresh way of doing things, and could throw up interesting

new opportunities.

6



Computational Impedance Generation and Bore Optimisation for Matlab 7

1.4.1 Finite Difference Schemes

A finite difference scheme is a numerical method that attempts to approximate the

overall solution of partial differential equations by approximating the derivatives

using finite differences. To elaborate, a solution space is discretized into a finite

grid of spacial parts, with time discretized in a similar manner. Derivatives are

approximated by taking differences between nearby grid points, and the overall

numerical solution advanced by the use of recursive methods. The finite difference

methods used in this project are based in the time domain.

The introduction of some basic notation will be helpful in keeping track of the

workings of the scheme when it is presented. A more comprehensive glossary of

terms is contained in Appendix II, to which any readers less familiar with these

techniques are directed. Remembering that the solution space is now a discrete

grid, we represent a solution to 1.2 at spacial point l and temporal point n as

Ψn
l . Derivatives are calculated using a selection of templates, with δ representing

a spacial or temporal operator. Most commonly used are forward, backward and

central templates. Equation 1.4 below demonstrates the forward case, where h is

a spacial step.1

∂

∂x
Ψn
l = δx+Ψn

l =
1

h
(ex+ − 1)Ψn

l =
Ψl+1 −Ψl

h
(1.4)

The backward and central cases are derived similarly using δx−Ψn
l and (δx+−

δx−)Ψn
l respectively. Double derivatives are approximated by combining the for-

ward and backward templates. Temporal derivatives are dealt with in a similar

fashion, using a time step k.[12]

1.4.2 Scheme for Webster’s Equation

Recall equation 1.2:

SΨtt = γ2(SΨx)x (1.5)

A suggested finite difference scheme, set out in [12], is:

[S]δttΨ = γ2δx+((µx−S)(δx−Ψ)) (1.6)

where µx− is an averaging operator and [S] = µxxS is a second order approx-

imation to the continuous form of S. After operator expansion, some rearrange-

1To keep the notation simple, the part that is not being operated on will often be omitted.
In 1.4, the temporal part of Ψ is omitted since there are only spacial operators active.

7



Computational Impedance Generation and Bore Optimisation for Matlab 8

ment is required to enable the recursive relation. This involves expressing the

temporal update point in terms of everything else. After some algebraic work,

1.6 becomes:

Ψn+1
l = λ2

Sl+1 + Sl
2[S]l

Ψn
l+1+λ

2Sl + Sl−1

2[S]l
Ψn
l−1+2

(
1− λ2Sl+1 + 2Sl + Sl−1

2[S]l

)
Ψn
l −Ψn−1

l

(1.7)

where

λ = γk/h, known as the Courant number.

Once the scheme has been run, the fourier transform of Ψ is taken in order to

observe the results in the frequency domain.

Boundary Conditions

Clearly, the scheme will be compatible for interior points of the grid domain.

However, when we try to use the boundary points l = 0 and l = N , problems

emerge as 1.7 attempts to access grid points Ψ−1 and ΨN+1 which of course do not

exist. This problem was accounted for in the previous section, where boundary

conditions were imposed for each end of the instrument. Assimilating these into

the scheme is fairly straightforward, with the Neumann case providing a simple

example:

Ψx(0, t) = δxΨ0

=
Ψ1 −Ψ−1

2h
= 0

∴ Ψ−1 = Ψ1

Similarly, S−1 is set to S1 and due to various cancellations there is much

simplification of the surface area quotients in 1.7. The grid point l = 0 then

becomes:

Ψn+1
0 = λ2Ψn

1 + λ2Ψn
−1 + 2(1− λ2)Ψn

0 −Ψn−1
0

= 2λ2Ψn
1 + 2(1− λ2)Ψn

0 −Ψn−1
0

8



Computational Impedance Generation and Bore Optimisation for Matlab 9

which is an explicit result for behaviour at the left boundary. With a bit

more effort, the Dirichlet boundary condition with radiation loss can be added to

the scheme in a similar fashion. Note that in the accompanying source code the

boundary condition expressions are broken into parts to maintain clarity.

Adding Viscothermal Losses

While radiation loss has already been taken care of, there is still scope to further

improve the model by accommodating viscothermal losses. This incorporates loss

terms accredited to a viscous boundary layer at the walls of a tube, and the effect

of vibration and damping in the tube walls themselves.[12] Modelling viscother-

mal losses is relatively straightforward in the frequency domain, but can be more

consuming in the time domain.[13] Nevertheless, a fairly simple model presented

in chapter 9 of [12] takes care of many of these considerations. It extends Web-

ster’s equation and couples it to another functions w which incorporates damping

parameters. A full statement of the extended system with associated parameter

descriptions is presented in Appendix II.

Further Comments

Some more minor but still important points need to be mentioned. The excitation

mechanism to be bolted on to the Neumann boundary condition will simply be a

unit impulse. Another essential task is to ensure scheme stability. Through energy

analysis2 of 1.7, it is determined that the stability condition is λ ≤ 1. Having λ

as close to 1 as possible is advisable for these schemes. Of particular note is the

special case where λ = 1, which in fact simplifies 1.7 to a digital waveguide.[12]

Finally, since finite difference methods only approximate an overall solution, there

will of course be some (small) error. Forward and backward schemes have error

proportional to h (or k, if temporal operators are being used), while central

schemes have error proportional to h2 (or k2).[16]

1.4.3 Defining the Bore Profile

Now that the theory of impedance computation has been covered, we move on

to discussion about how to construct bore profiles to be used as the input. As

the resulting programme is intended to be user-friendly, it is essential that the

construction be relatively straightforward and easy to use while at the same time

2Energy analysis is a commonly used tool to determine stability of finite difference schemes.
Although it is beyond the scope of this project, much theory and application of the methods is
contained in various chapters of [12].

9



Computational Impedance Generation and Bore Optimisation for Matlab 10

being flexible enough to define many instrument shapes and features sufficiently.

The approach adopted here is to use a concatenation of cylinders, truncated cones

and bessel horns. This allows effective and reasonably accurate construction of

instrument shapes, but without over complicating things. It also enables the user

to easily specify ‘jump sections’, which may occur if a particularly detailed design

is being constructed.3

When working with multiple bore sections, the equivalent sample length must

be calculated accurately for each section. Recall that a bore of length L will be

discretized into a finite grid of spacial parts. More specifically, the instrument

radius will be ‘sampled’ at N equally spaced points. If there are NS sections each

with length d1, d2...dNS, then the number of points allocated to section i will be

N di
L

, rounded to the nearest integer. This ensures that the ratio of section length

to overall length will always be maintained, even if section lengths are repeatedly

changed. Each sample point requires calculation of a radius, which in turn is

used to calculate the surface area values S for the finite difference scheme.

Cylindrical and conical sections are easy to define. The cylindrical case simply

takes two variables - length and radius, with the latter remaining constant all the

way along the section. Conical cases requires three variables - length, input radius

and output radius. The cone profile then consists of Ni linearly spaced points

between the two specified radii, where Ni is the number of sample points assigned

to the section, calculated in the same way as above.

Constructing bessel horns is a slightly more complicated but still worthwhile

undertaking as they offer a reasonable approximation of instrument bells.[2] A

bessel horn can be defined as follows:

r(x) = b(x+ x0)
−γ (1.8)

where r is the radius at point x along the instrument and γ is the flare

coefficient. Furthermore;

b =

(
d

r−γ0 − r
−γ
1

)−γ

(1.9)

x0 = −
(r0
b

)−1/γ

(1.10)

with r0 and r1 being input/output radii respectively and d being the length

of the section. Therefore, constructing the bessel case requires four variables -

3‘Jump section’ refers to when the end radius and starting radius differ in two consecutive
sections.

10



Computational Impedance Generation and Bore Optimisation for Matlab 11

length, two radius values and a flare constant, which is generally between 0.5 and

0.8. Lower values of γ produce a more rapid flare.[9]

1.4.4 Implementation of Impedance Generator

The code included along with the project is written entirely in Matlab and is used

for all the later experiments. Given a pre-specified instrument shape, it models

the acoustical behaviour in the bore and returns four plots - two impedance plots

(one linear, one logarithmic); a plot of the 2D cross-sectional area; and a 3D

rendering of the instrument.

User input includes the total instrument length and the number of individual

sections along with all the quantities to describe each. These quantities are

presented in vector form. When entering the information for a particular section,

the first entry in each ‘section vector’ is required to be an identification number

indicating the type of section to be created. 1 represents a cylinder, 2 a cone and

3 a bessel horn. For example, a conical section vector is entered as [2, d, r0, r1].

This identification method allows the programme to select the relevant script to

construct each bore section.

11



Chapter 2

Experiment and Analysis of

Impedance Generator

With the conclusion of the previous chapter we now may explore the performance

and applications of the impedance generation software. The main ethos of this

chapter is to investigate the robustness of the program and give an insight into

how it can be used. Preliminarily, experimental tools and analysis methods are

summarised, and this is followed by accuracy tests and demonstration of prac-

tical use. Comments on strengths, weaknesses, improvements and miscellaneous

intricacies are noted throughout.

2.1 Experimental and Analytical Tools

2.1.1 BIAS

Testing the performance of the impedance generator necessitates the need for ac-

curate impedance curves of real instruments so comparisons can be made. BIAS,

or Brass Instrument Analysis System, is now a widely used system renowned

for producing reliable and accurate impedance data.[30] All physical impedance

measurements in this project were carried out over a frequency range of 0-4096

Hz.

2.1.2 Equivalent Fundamental Pitch

A common and useful tool for analysis of impedance comes in the form of the

EFP.[1, 11, 8] This takes an arbitrary reference frequency f0, and compares the

measured resonance frequencies to the harmonic resonances of f0. The units of

measurement are cents. The shape of the plot is independent of the value of f0;

12



Computational Impedance Generation and Bore Optimisation for Matlab 13

nevertheless, common values include setting f0 equal to the fundamental or equal

to f4/4.1

While the EFP can assist to an extent in judging the strength of cooperative

regimes, it is also beneficial in comparing different sets of readings, such as BIAS

data against our model data.

2.1.3 Sum Function

Judgement of cooperative regime strength and prominently sounded pitches can

be represented graphically and numerically by the sum function. It helps give a

rough idea of how well aligned the impedance peaks are for a given fundamental

frequency, and hence give an indication of whether this particular frequency will

produce a strong, easily playable regime.

The sum function was first suggested by Wogram in 1972 - for in-depth infor-

mation see [17]. The theory is straight forward: for each frequency value in the

experimental range, the harmonic partials are calculated and their corresponding

impedance values summed. This is summarised by the following formula:

S(f0) =

fp=fh∑
fp=f0

Z(fp) (2.1)

where

f0 = Fundamental frequency

fp = Harmonic partial of the fundamental

fh = Highest partial

Z(fp) = Input impedance for partial fp

Plotting the numerical values helps indicate the most easily attainable fre-

quency regimes for the instrument under investigation. However, care is needed

when drawing conclusions from the data as it can over-represent low frequencies

or frequencies whose integer multiples lie on the sides of some particularly tall

peaks, giving a distorted representation. This issue can be lessened by using a

scaled version of the sum function where the total sum is divided by the number

of components it was comprised of. Another method of improving the resolution

is to introduce different weighting on successive harmonics.

1f4 is the 4th resonance peak. One reason for its use is that the fourth resonance is commonly
used by musicians for tuning.

13



Computational Impedance Generation and Bore Optimisation for Matlab 14

2.2 Accuracy Tests

On first impressions, the impedance plots look reasonably good. They have

prominent, well defined peaks and obvious decay due to the modelling of com-

bined energy losses. The peak width on the linear plots is one area immediately

identified for improvement. Nevertheless, the general shape is largely what we

would expect. Of course, the real importance lies in whether the model can re-

produce plots accurately when compared against measured data, hence this will

be the main focus of this section.

Accuracy of the impedance generator is explored by comparing measured and

computed impedances of bore profiles through use of some of the methods de-

scribed above. Two selected tests are presented below, with all physical readings

obtained using BIAS. The first is rather simplistic, intended to demonstrate that

the model is satisfactory at a basic level. The second is more detailed and com-

plicated, with the intention of testing the model to its limits. Comments will be

made on accuracy throughout, with a view to improving the model as much as

possible. All computational measurements were carried out at a sample rate of

44100Hz.

2.2.1 Test 1: Simple Cylinder

The profile of a simple cylinder consists of a single section that can be recreated

perfectly by the generator. Hence it is a plausible choice when there is a desire

to keep things as simple as possible. The cylinder in question is a brass tube

of length 1006mm and inner radius 12.5mm, open at one end and closed at the

other, with no other features of note besides its dimensions. Fig 2.1 displays the

resulting impedance curves in linear and logarithmic plots.

The graphs display a set of odd harmonics gradually decreasing in magnitude,

which is what we would expect from a tube open at one end and closed at the

other.[10] Initial inspection reveals that the peak locations seem to agree to a rea-

sonable extent. The frequencies of the lower resonance peaks are closely matched

between the calculated and measured cases, but as the frequency increases the

calculated peaks gradually become sharper in intonation.

14



Computational Impedance Generation and Bore Optimisation for Matlab 15

Figure 2.1: Linear and Logarithmic Impedance Plots for a Simple Cylinder

To give a clearer picture of how accurate this case is, we can quantify these

differences and observe them in an equivalent fundamental pitch plot. The full

results for the first 10 peaks of 2.1 are presented below and compared to the

measured impedance values. Note that since the even harmonics are missing,

figure 2.2 must label the peaks relative to their place in the theoretical complete

harmonic series for the cylinder.

Table 2.1: Impedance values for the first 10 resonance peaks

Peak Measured Freq. Model Freq. Absolute Difference (cents)

1 84 85 20
2 254 257 20
3 423.5 428 18
4 593.5 599 16
5 763.5 770 15
6 933.5 942 15
7 1104 1113 14
8 1276 1284 11
9 1445 1455 12
10 1616 1626 11

15



Computational Impedance Generation and Bore Optimisation for Matlab 16

Figure 2.2: EFP for Simple Cylinder. f0 = 84Hz

Both table 2.1 and figure 2.2 show that despite the initial observed discrep-

ancies, the model is actually very accurate. The maximum peak difference is

20 cents, which is acceptably low - to add a bit of perspective, 100 cents corre-

sponds to one semitone in an equally tempered scale. Although the frequency

gap slowly increases with peak number, the absolute difference actually falls due

to the nature of intervals being calculated by frequency ratio. Note also that all

the peaks lie close to the ideal resonance line, supporting the well known theory

that cylinder resonances form good harmonic series.

These results confirm that the model is at least accurate enough to try on more

complicated designs. One other area that has not yet been mentioned is peak

magnitude; it is noticeable from the plots that the magnitudes from the model

are consistently higher than those from the physical measurements. Further ex-

periments and observations in [1] indicate that this over-estimation is down to

the plane wave assumptions made when modelling Webster’s equation. Regard-

less, magnitude accuracy is not overly important, as the impedance magnitudes

in instruments depends much on the techniques of the players themselves. The

size of magnitude decrease between consecutive peaks is consistent between the

modelled and measured values; so the discrepancies should be irrelevant even

when attempting to analyse the strength of any cooperative regimes.

2.2.2 Test 2: A More Complicated Bore Profile

As the modelling process has been deemed acceptable, we can try it on a more re-

alistic instrument profile. The acoustics department has records of detailed mea-

surements of several brass instruments, along with their measured impedance.

16



Computational Impedance Generation and Bore Optimisation for Matlab 17

The geometrical measurements are very precise and meticulous, which will min-

imise experimental error in this area. The particular design selected was a Hof-

master natural trumpet in E[ of 2.1m length, with accurate measurements of

the lead pipe, jump sections and bell dimensions all included. The resulting re-

construction displayed in 2.3 and 2.4 is an 11 part bore consisting of 7 cones,

3 cylinders and a bessel section - a full description of the parameters for each

section is included in Appendix III.

Figure 2.3: 3D plot of detailed bore profile

Figure 2.4: Close up of mouthpiece section

Similarly to the previous test, examination of various plots can provide us

with plenty of information on accuracy:

17



Computational Impedance Generation and Bore Optimisation for Matlab 18

Figure 2.5: Impedance Plot for Detailed Bore Profile

Figure 2.6: EFP for Detailed Bore. f0 = 77Hz

Again, the lower frequency peaks generally seem to line up, but this time the

peaks produced by the model become flatter as the frequency increases. It is clear

that the discrepancies are much greater than in our previous case; then again, this

is to be expected from such a complicated design. Frequency difference between

the higher peaks sits at around 16Hz, while the maximum and minimum differ-

ences measured in cents are 71 (peak 8) and 13 (peak 2) respectively. Although

this is quite a significant rise, it should be remembered that this still isn’t even

near a semitone in pitch difference, and hence the results could still be considered

reasonable. Another positive to note is that the pattern of harmonicity in the

peaks is followed closely by the model, as seen clearly in figure 2.6. Also, the

18



Computational Impedance Generation and Bore Optimisation for Matlab 19

peaks around 400-600Hz have been boosted in height, which is likely due to the

influence of the mouthpiece included in the design. One other point of interest is

the flatness in pitch of the second peak, which highlights how these graphs can

indicate areas of instruments that potentially need improved.

2.2.3 Further Comments

Analysis has showed that with increase in sophistication of bore profile comes

a decrease in impedance accuracy. Test 1 had an average error of 15.2 cents

and test 2 an average of 44.4 cents. Despite this, even in the most complicated

cases the computational results still hold a degree of plausibility. The modelled

lower frequencies were generally always in agreement with the measured values.

This is a strong result in itself, as these lower peaks are often fundamentals or

have a large influence in the pitch of the resulting sound. Performance-wise, the

code runs smoothly and can calculate impedances for even the most complicated

designs in under 2 seconds.

Sources of Error and Improvements

Even with the model being deemed acceptable, it is essential to discuss possible

sources of error along with tabling some potential improvements to minimise it.

Experimental error can roughly be attributed to one of two cases: modelling error

or measurement error.

Modelling Error: There were many assumptions made when modelling wave

dynamics in a tube using Webster’s equation. Two of the most error-prone were

that no transverse modes existed, and that all wave propagation was planar. Un-

surprisingly, real acoustic behaviour in tubes is much more complicated, with

mutli-modal oscillations existing and waves with curved wavefronts being pro-

duced by flaring horns.[9] Hence it would be advantageous to further adapt the

model to include these features. Further experimentation in [1] (Ch.8) demon-

strates that using a multi-modal model has a significant effect in shifting the

frequency and magnitude of modelled peaks closer to the measured values.

Assumptions made in modelling viscothermal losses could also contribute to

overall error. Values for the damping parameter σ0 were only set experimentally,

and the model does not account for the level of energy absorbtion relative to

material of the tube. Furthermore, the characteristics of wave propagation have

been modelled under the assumption that the viscous boundary layer at the inner

tube wall remains isothermal. Keefe ([18]) points out that there is in fact local

19



Computational Impedance Generation and Bore Optimisation for Matlab 20

temperature change at the tube walls. Incorporating this into our model is beyond

the scope of this project, but it is still certainly worth highlighting as a source of

error.

Finally, it should also be remembered that finite difference schemes only of-

fer an approximate solution to partial differential equations. Hence, they can

additionally be responsible for some error.

Measurement Error: The significance of errors due to measurement lies in

the fact that impedance results can be sensitive to even very small discrepancies

in the geometry of the bore.[1] Despite successfully being able to construct detailed

virtual instruments using only three core sections, there are bound to be small

areas where there is slight deviation from the real design. Additionally, the

lack of curvature in modelled profiles will contribute to reduced accuracy. One

practice known to offer good improvements is to construct a bell with multiple

concatenated bessel horns instead of just one.[1]

Inaccuracies from the BIAS equipment could have affected accuracy in the

physical measurements, which in turn will have introduced error into the accu-

racy measurements for the impedance generator. Recently, tests have been per-

formed using a larger frequency sweep in order to improve the robustness of BIAS.

Improvements in all these areas would undoubtedly improve the alignment and

accuracy of our impedance curves. The bandwidth, magnitude and shape could

also benefit, but it should be remembered that these features can also be heavily

influenced by the embouchure of the player.

2.3 Practical Uses

The previous section shows that despite the discrepancies and difficulty in achiev-

ing perfection, the impedance generator is still accurate enough to be used as a

basic design, analytical and investigative tool. To complete the chapter, this

section briefly presents two example applications of the system.

2.3.1 Application 1: Prediction of Notes with the Sum

Function

The first application explores how the impedance generator can be used to roughly

predict the pitches sounded by any bore shape. This can be done by inspection

of the peak positions and/or by use of the sum function. To demonstrate, we

20



Computational Impedance Generation and Bore Optimisation for Matlab 21

need run the impedance generator on a virtual model of an instrument and then

compare our pitch predictions to those measured in playing tests on the real in-

strument. Conveniently, all the relevant data is available from a previous project

by the author ([19]), so it will be suitable to re-use it here.

The instrument to be analysed is a Serpent. Despite being quite complicated

acoustically, when all holes are closed it can be estimated as a truncated cone.

The Serpent used in the playing tests has a total length of 2.38m, consisting of a

mouthpiece of length 0.025m, a crook of 0.41m and a main bore section of 1.94m.

The internal radius at the left end is 5.5mm, while at the right end it begins

at 48mm and gradually rounds off to 54.5mm. This bore was modelled in the

impedance generator using four sections (3 conical and 1 bessel), producing the

curve shown in 2.7.

Figure 2.7: Bore Profile and Impedance Curve for Serpent

This curve generally agrees with observed values on the BIAS measurements

of the actual instrument. In order to predict what pitches may be easily played,

we must look for evidence of strong cooperative regimes - in other words, we look

for strong harmonically related peaks supporting some base frequency. This is

where the sum function comes in handy, as it produces a graph from which the

strongest frequency regimes can be read off. Fig 2.8 is the relative sum function

plot for the impedance curve in 2.7. Any partials above 3000Hz are ignored, as

they will contribute little, if anything to the overall intonation.

21



Computational Impedance Generation and Bore Optimisation for Matlab 22

Figure 2.8: Relative Sum Function

The resulting plot has several well defined peaks, representing the frequencies

at which cooperative regimes may be most easily formed. The five tallest suggest

that with all holes closed the serpent will pitch at 64Hz, 132Hz, 192Hz, 257Hz

and 326Hz. Playing tests confirm that pitches of 66Hz, 135Hz, 200Hz, 265Hz

and 340Hz are sounded, which are all within the vicinity of our predictions.[19]

These correspond to the notes C2, C3, G3, C4 and E4 on the Serpent. This

demonstrates that the impedance generator can be used adeptly in prediction of

how instruments may sound.

2.3.2 Application 2: Bore Alteration

The second application focuses on impedance behaviour when certain features of

a typical brass instrument are added or removed. It is intended that this could

be used as a tool for basic demonstrations, or to simply entertain the curiosity of

the more adventurous user.

It is already common knowledge that items such as a mouthpiece or bell will

alter the shape and positioning of impedance peaks.[20] Starting with a simple

cylinder, we will use the impedance generator to produce and study two cases

where a new part is attached.

Figure 2.9 demonstrates the effect of an attached mouthpiece. The main

points to note from the plot is that the peak heights have been boosted and

the higher resonance frequencies slightly decreased. The magnitude increase is

due to the mouthpiece acting like a Helmholtz resonator while the lowering of

frequencies is because it also effectively lengthens the tube, which becomes more

profound at higher frequency.[20]

22



Computational Impedance Generation and Bore Optimisation for Matlab 23

Figure 2.9: Comparison when Mouthpiece is attached

The attachment of a bell is explored in 2.10. The plot indicates that it roughly

does the opposite to the mouthpiece; there is a reduction in magnitude at higher

frequencies along with an increase in the frequency values of lower pitched reso-

nances. Physical experiment shows that a bell provides more efficient radiation

of high frequency waves, giving the characteristic ‘brassy’ sound. Since more

energy is radiated, there will be less remaining inside the bore, as shown on the

plot. The rise in frequency of the lower resonances is attributed to the bell ef-

fectively shortening the the tube, which will most affect behaviour in the lower

frequencies.[20]

Figure 2.10: Comparison when Bell is attached

This brief discussion has demonstrated that data produced from altering the

bore profile is consistent with physical observations, and therefore the system is

also acceptable for this type of application.

23



Chapter 3

Bore Optimisation

3.1 Initial Discussion

We now turn our attention to the reverse problem, where the aim is to generate

a bore that matches some pre-specified impedance values as closely as possible.

This is arguably a more challenging task than the forward problem; however,

once understood, the theory for carrying out such a computation actually seems

fairly intuitive and simple. The key to tackling the problem is to run through

lots of possible bore designs and quantitatively compare the impedance curve of

each one to the target curve by using an objective function to rate the suitability

of each design. The aim will be to develop some sort of ‘search method’ that can

find the closest match, which will correspond to the minimisation of the objective

function.

Informally, the above essentially describes an optimisation process. The gen-

eral form of an optimisation problem, adapted for the notation used herein, is as

follows:[21]

min O(α)

subject to g(α) ≤ 0

α ∈ RNv

where O : RNv → R is the objective function and g : RNv → RNv is a

system of constraints on the various instrument parameters. Nv represents the

total number of instrument parameters, which are arranged into a vector α =

(α1, α2...αNv). For example, an instrument made up of a cylinder and a cone is

24



Computational Impedance Generation and Bore Optimisation for Matlab 25

written α = (r0, d1, r0, r1, d2).

To take this initial theory further, we need to choose a suitable optimisation

algorithm and define an appropriate objective function.

3.2 Rosenbrock Algorithm

There are many different types of optimisation algorithms, including direct search,

gradient-based and stochastic. The Rosenbrock method[22, 1, 23] is a 0th order

direct search algorithm which is suited to our problem. As hinted by ‘0th order’, it

does not require any gradient information in order to work, which is advantageous

since gradient analysis requires calculation of many computationally-expensive

derivatives if not skilfully formulated. Additionally, the algorithm is fairly easy

to understand, which should make it easier to alter and improve the code in any

future work.

3.2.1 Outline

As previously stipulated, the aim is to find a vector of parameters α which gives

the minimum value of the objective function O, denoted O(α̂). The algorithm

takes a series of steps in strictly orthogonal directions, rating each new set of

parameters and regularly updating the overall direction of movement to point

in the direction of best success.[1, 22] This can be roughly summarised in two

sections: the Exploratory Stage and the Orthogonalisation Stage. Much of

the theory here is based on the detailed articles of [1], [22] and [24]. Figure 3.1 is

a good demonstration of the algorithm in action, showing the navigation towards

the minimum of a function of two variables. In most applications, the number of

variables will be higher and hence the movements will be difficult to visualise.

25



Computational Impedance Generation and Bore Optimisation for Matlab 26

Figure 3.1: Rosenbrock Optimiser working on a contour plot. Black lines denote
a successful step; dotted red lines denote a failed step

Initial Settings

Working with an instrument of Nv parameters can be thought of as working in

Nv-dimensional space, with each parameter lying on a coordinate axis. Various

quantities must be defined to initialise the algorithm. An Nv x Nv direction

matrix D with mutually orthogonal columns holds direction vectors di for each

parameter, with |di| = 1. In default settings, the starting directions are simply

coordinate directions, hence D will be the identity matrix INv . The step lengths

l = (l1, l2..., lNv) for each direction di also need to be defined. along with values

for two tuning parameters a > 1 and 0 < b < 1. Finally, we must specify an

initial value for α in order to calculate a starting value for O.

Exploratory Stage

Using the terminology just defined along with αc to represent the current set of

parameters, the algorithm takes a step of distance li in direction di from αc. This

can be expressed as

α = αc + lid
T
i (3.1)

26



Computational Impedance Generation and Bore Optimisation for Matlab 27

This provides us with an updated set of parameters which describe a new bore

design. It is then necessary to check if the impedance curve of this new design

is any closer to matching the target curve. Therefore, the impedance generator

is used to get Z(α), and this data is in turn fed into the objective function to

return a numerical rating. From this point, the algorithm proceeds in one of two

ways:

� If O(α) ≤ O(αc), then the step is deemed successful as the objective func-

tion indicates that this design is closer to matching the target. αc is set to

α and the step size li is multiplied by a, so that it will search further in

this direction next time.

� If O(α) > O(αc), then the step is deemed a failure. α is discarded and

αc is retained as the current preferred design. li is multiplied by b, which

reverses and reduces the direction of travel for the next cycle.

This procedure is repeated for each dimension i until both a success and a

failure have been found in each direction. This indicates that the search has been

exhausted for the current set of direction vectors contained in D, and triggers

the beginning of the orthogonalisation stage.

Orthogonalisation Stage

The purpose of this stage is to recalibrate the direction vectors so that they

point in the direction of best progress so far, while at the same time maintaining

the orthogonal nature between direction vectors. It can also be thought of as

rotating the rigid ‘coordinate frame’ to further guide the optimiser towards the

likely optimal point.

Again, it is necessary to define some initial quantities in order to carry out

the orthogonalisation. During the exploratory stage, the total distance travelled

in each direction di is denoted by λi. We now define a new matrix Λ, which logs

the λi’s column-wise as follows:

Λk =
Nv∑
i=k

λid
(0)
i (3.2)

where d
(0)
i indicates the direction vectors from the previous stage. The struc-

ture of this matrix is easiest to understand when we consider the initial case

where the di are simply coordinate vectors. Then 3.2 produces the matrix

27



Computational Impedance Generation and Bore Optimisation for Matlab 28

Λ =


λ1

λ2 λ2
...

...
. . .

λNv λNv . . . λNv

 (3.3)

where the first column contains all successful steps in an exploratory stage, and

hence joins the beginning and end points of the stage. The procedure to obtain

new direction vectors is based on the Gram-Schmidt technique[25] and uses these

new quantities along with the direction vectors from the previous stage, d
(0)
i .

The explicit derivation will not be covered here, but it is well documented in

[1], [22] and [24]. One point of note, however, is that the version provided in [22]

is susceptible to numerical instability in cases where the total distance travelled

in a certain direction is equal to zero (this is possible when the algorithm ‘doubles

back’ on itself in a particular direction). To avoid this occurrence, the modified

version of Palmer ([24]) is used. The new direction vectors are then be expressed

as

d
(1)
i =

λi−1Λi − d(0)
i−1|Λi|2

|Λi−1||Λi|
(3.4)

for 2 < i < Nv, with

d
(1)
1 =

Λ1

|Λ1|
(3.5)

for i = 1. In the special case where λi−1 = 0, d
(1)
i = −d(0)

i−1.

This new set of direction vectors is then used in another exploratory stage,

and the whole process keeps repeating until certain termination criteria have been

met.

Constraints and Termination Criteria

It is in our interest to restrict the solution space as much as possible without

ruling out sensible instrument designs. The most obvious constraint is to ensure

that all parameter measurements αi are positive, which of course keeps the prob-

lem within the bounds of physical reality. It is worth imposing more bounds to

further restrict the solution space; additionally, upper and lower bounds are as-

signed to all lengths, radius and flare parameters. If the algorithm strays outside

these boundaries, the objective function is simply set to a maximum, and so the

optimiser will take no further interest in that particular set of parameters. Other

28



Computational Impedance Generation and Bore Optimisation for Matlab 29

constraints on the system include eliminating the physically incompatible case of

r1 > r0 for bessel horns, and restricting the order sections can be arranged in to

ensure the aforementioned shape can only be placed at the end of an instrument.

A range of termination criteria can be utilized, but the more practical are

time and distance restrictions. Time restrictions are self explanatory; a threshold

can be set and when the elapsed time exceeds this, the algorithm terminates.

Slightly more practical is the latter case, which measures the maximum distance

travelled in coordinate directions by subtracting α from αc after each iteration.

Setting an acceptably small threshold will ensure that the algorithm has enough

time to converge on a possible solution before termination.

3.3 Objective Function

To complete the bore optimiser we need to define an objective function that

provides a suitable rating of how closely a curve matches the target. Since peak

location and magnitude are the two most influential features of an impedance

curve, it seems logical to base any objective rating system around these. We also

wish the objective function to be as smooth as possible and to have a prominent,

obvious global minimum - something similar to De Jong’s function in figure 3.1

would be an ideally suitable case in two dimensions.

The strategy we will adopt is to use two separate objective functions com-

bined together with different weights to give the overall rating as a score between

0 and 1, with 0 being a perfect match and 1 being no resemblance whatsoever.

This is keeping within the standard practices of optimisation techniques where

the primary aim is to minimise the objective function. The two functions rate

peak location and height relative to the target curve. They are each based on a

normalised inverted Gaussian function[26], which possesses the basic characteris-

tics that we seek along with flexible parameters to alter the general shape. The

peak location function is expressed as

O1(α) =
1

Npk

Npk∑
i=1

1− exp

(
−µpδφ2

i

ν2p

)
(3.6)

where δφi = |φi− φ̄i| is the difference between the test and target locations of

peak i, µp is a strictness parameter, νp is a windowing parameter and Npk is the

total number of peaks being tested. µp and νp can be used to control the width

of objective curve bell. Using this Gaussian-based approach results in a much

steeper function gradient at even moderate distances from the solution, resulting

29



Computational Impedance Generation and Bore Optimisation for Matlab 30

in improved convergence speed.[1]

The peak height function is very similar to 3.6 above, with slightly different

parameters:

O2(α) =
1

Npk

Npk∑
i=1

1− exp

(
−µhδξ2i
ν2h

)
(3.7)

where δξi = |ξi − ξ̄i| is the difference between the test and target heights of

peak i. µh is again a strictness parameter, while νh is a windowing function

based on magnitude rather than frequency. The full function is then defined by

combining 3.6 and 3.7 and adding weights to each:

O(α) =
w1O1 + w2O2

w1 + w2

(3.8)

where the wi are generally set between 0 and 1. Since the length of an in-

strument holds a greater influence than bore radius over the overall sound of an

instrument, the default values of wi are often set with more emphasis on peak

location.

For the sake of clarity, it will help to visualise what had just been mathemat-

ically described. When tackling a two dimensional problem, such as a cylinder,

the objective function has the typical (inverted) Gaussian shape with a large dip

towards the minimum as the length coordinate (y) becomes closer to the optimal

solution. The change of gradient in the radius (x) coordinate depends on the

weighting assigned to 3.7.

Figure 3.2: Objective Function based on length and radius, w = [1,0.2]. Optimal
solution is at α = [0.01,1]

30



Computational Impedance Generation and Bore Optimisation for Matlab 31

Intuitively, increasing the number of instrument parameters increases the di-

mension of the problem and hence the complexity of the objective function. The

implications are this are discussed in further details in section 4.2.

3.4 Implementation of Bore Optimiser

The code for the bore optimiser provides a relatively high degree of user cus-

tomisable features. Users must specify the number of sections along with the

corresponding number of variables that they wish the output bore to have. They

also must define a vector containing the nature of each section type, using the

number prefix system as described in 1.4.4. Using this approach results in the

optimiser having to stick to the section order defined at the beginning; this is an

advantage as it reduces the size of the solution space, but also a disadvantage as

the order of sections may not be interchanged during the optimising process. Fu-

ture work could attempt to rectify this issue, but how big an ‘issue’ it actually is

depends on the readers preference between flexibility and efficiency. One further

restriction is that bessel horns may only be placed at the end of an instrument,

which is of course a justifiable action.

Above everything else, the user must input some target impedance data. For

the time being, only data on peak locations and magnitudes is needed due to the

nature of our objective function. Data for a ‘complete curve’ can be trimmed

down by using Matlab’s peakfinder function. Alternatively, the user may specify

a target bore shape, from which a target curve can be calculated. This option

has been used mostly for testing the optimiser. Note that scoring instrument

designs on peak information alone eliminates the uniqueness of solutions. Starting

parameters can either be defined by the user or generated randomly.

Optional inputs include specified bounds and step sizes for radii, lengths and

flare constants, along with time and step thresholds for the termination of the

optimiser. These are set to default values if not specified by the user. Care should

be taken in setting the upper and lower bounds, as being too flexible may vastly

increase calculation time and produce poor results, whilst being too restrictive

risks ruling out reasonable solutions. In cases where the optimal solution falls

outside of the solution space, the program will attempt to find as close a match

as possible.1

Once the bore optimiser has terminated, it returns the optimised bore param-

1This, for example, could happen if we are estimating a detailed trombone as only a cylinder
and bessel horn. Hence the impedance curve for the detailed trombone will be difficult to match
exactly with only these sections.

31



Computational Impedance Generation and Bore Optimisation for Matlab 32

eters α and (if requested) various plots of the optimised impedance curve, target

curve and optimised bore profile.

32



Chapter 4

Experiment and Analysis of the

Bore Optimiser

Like with the impedance generator, we may now test the accuracy and robustness

of the bore optimiser as well as discussing improvements and applications. The

chapter begins by examining how the optimiser performs with single section bores,

and then moves onto a more complex problem. Any issues or challenges are

then discussed along with possible performance improving modifications. The

optimiser is quite susceptible to changes in the algorithm parameters, hence much

of the work presented in this chapter has been produced after lots of fine-tuning.

4.1 Accuracy & Performance Tests

4.1.1 Test 1: Optimising Single Sections

To verify the performance of the optimiser on a basic scale, it is tested on the

constituent parts that are used to make up full bore profiles. What follows are

a set of simple tests on a cylinder, cone and bessel horn. A target bore is set

for each test, from which a target curve can be calculated using the impedance

generator. All tests are carried out using the following parameters: Npk = 10,

νp = 60, νh = 60, µp = 1, µh = 5, a = 3 and b = 0.5. Maximum weights of 1

are assigned to both the peak locations and peak heights, and the time threshold

is set to 60 seconds. These values were all selected after a period of rigorous

pre-testing. Step sizes have been set to rather large values, as suggested by the

informal article in [27]. The reasoning behind this is that even if the search

path falls into a local minimum, the step values will still be large enough to

offer a good chance of finding a lower value of the objective function, allowing

33



Computational Impedance Generation and Bore Optimisation for Matlab 34

the algorithm to proceed. Since the neighbourhood of points around a local

minimum will generally be higher, small step sizes will only increase the chance

of getting permanently stuck in a local minimum.

Convergence on the global solution may depend on the selection of the starting

point - the further away the algorithm starts, the greater chance it has of getting

stuck along the way. Therefore, the tests are run several times for each shape using

randomly generated starting points within the appropriate bounds. (rounding?)

Cylinder

The bore optimiser was applied from 4 starting points to try and find the closest

matching parameters for a target cylinder of radius 0.01m and length 1m. The

results are summarised in table 4.1:

Starting Parameters Optimised Parameters Time (Perfect Match)
0.0231, 1.4125 0.01, 1.005 -
0.0672, 2.4157 0.01, 1.005 -
0.0152, 2.4294 0.019, 0.995 -
0.0672, 1.2649 0.01, 1 34

Table 4.1: Optimisation of Cylinder. Parameters = [r0, L]

The optimiser clearly deals with cylinders well, which is the least we could

have hoped for. It will often return a perfect solution well within 60 seconds;

when this doesn’t happen, it still gets within a few millimeters. Removing the

time threshold altogether will almost always result in a perfect solution being

attained. Regardless of starting point, the algorithm will often be within a close

region of the optimal solution inside 10 seconds.

Cone

The same procedure was applied to a target cone with r0 = 10mm, r1 = 40mm

and L = 800mm.

Starting Parameters Optimised Parameters
32, 65, 2001 16, 66, 793
67, 48, 186 15, 63, 791
60, 66, 1729 10, 47, 801
54, 53, 1041 11, 41, 798

Table 4.2: Optimisation of Cone. Parameters = [r0, r1, L]

34



Computational Impedance Generation and Bore Optimisation for Matlab 35

Table 4.2 generally demonstrates very good results, but overall accuracy is

slightly decreased due to the increase in dimension of the problem. Regardless,

some results still get very close to a perfect solution - row 4 of the table being

a good example. The two worst performing tests seemed to be the ones with

initial lengths at the extremities of the solution space (rows 1 and 2), verifying

that distance of starting point can affect convergence rate and success. Lengths

tend to converge quicker that radii, and become close to the solution very quickly.

Bearing in mind the time threshold was still 60 seconds, the performance would

likely improve if this threshold was lifted.

Bessel Horn

The parameters selected for the target bessel horn were r0 = 20mm, r1 = 100mm,

L = 1000mm and γ = 0.7.

Starting Parameters Optimised Parameters
66, 72, 1911, 0.655 15, 90, 1013, 0.642
70, 137, 490, 0.624 15, 72, 1009, 0.665
52, 96, 917, 0.717 17, 96, 999, 0.757
26, 76, 712, 0.701 25, 84, 993, 0.714

Table 4.3: Optimisation of Bessel Horn. Parameters = [r0, r1, L, γ]

As expected, dealing with a 4-dimensional problem further affects the accu-

racy. The radii values are on average about 10mm out, while the flare constant

never really shows any pattern of convergence - in tests 3 and 4 it actually diverges

from the optimal point despite starting close to it. This may be because the flare

of a bell can influence both peak position and magnitude, so the objective func-

tion essentially has a harder job to do when analysing γ. However, the length

accuracy is still very good, coming within 1mm of the optimal solution in test 3.

Additionally, it still converges very quickly to the optimal neighbourhood. This

is a satisfying result when it is remembered that length is a formidable influence

on the acoustics of an instrument. Again, longer time thresholds or further ex-

perimentation with the parameter values may yield improved results. Despite the

inaccuracies, it is still worth applying the bore optimiser to a more complicated

problem to see how far it can guide us towards an optimal solution.

35



Computational Impedance Generation and Bore Optimisation for Matlab 36

4.1.2 Test 2: A More Challenging Optimisation

In practice the bore optimiser will largely be used on multi-section bores, so it

is sensible to see how it performs with this more complicated task. Dealing with

multiple bore sections of course further increases the dimension of the problem,

and this will likely result in the plentiful identification of areas to be improved

later.

The chosen target was the impedance curve for a 3-section bore made up of

a concatenated cylinder, cone and bessel horn designed to roughly estimate the

profile of the trumpet in section 2.2.2. This particular setting therefore involves 9

dimensions. All other core parameters remained the same as in 4.1.1, apart from

the time threshold which was raised to 120 seconds. Starting parameters were

again generated randomly.

A problem rapidly emerged with the multi-bore case, where some of the suggested

designs were physically unsatisfactory or completely untenable for calculating a

proper impedance curve, which can crash the program. Figure 4.1 is one such

example. This problem stems from a lack of restrictions on ‘jumps’ in input and

output radii in consecutive sections - the optimiser is free to create unrealistically

large jumps, and the issue can be further compounded if the starting design is

also unrealistic. In response, a ‘jump limiter’ was added into the code, which

only permits very small jumps and enhances the smoothness of output designs.

Figure 4.1: An Unsatisfactory Bore Design

When initiated with random starting points, the optimiser returned mixed

results. Some results (eg. 4.2) are very good, taking a difficult, unrealistic original

36



Computational Impedance Generation and Bore Optimisation for Matlab 37

design and converging towards the optimum reasonably well. Again, lengths

appear to converge the best. However, in other cases the bore designs, despite

being feasible, were still unsatisfactory - one common flaw was production of

unusually large radius values on the left side of the tube - values of 30mm or

more occurred often. Various other initialised values immediately got ‘stuck’,

resulting in a culmination of failed steps, terminating the algorithm very quickly

due the step sizes having been rapidly reduced below the threshold.

Figure 4.2: Bore Optimisation from randomly generated initial parameters. Dot-
ted green line is starting design, solid green line is optimised design, dotted blue
line is target bore.

Taking these observations into account paved the way for more improvements,

this time related to the flexibility of the initial parameters. It is not unreasonable

to assume that when optimising, we already have a good idea of the instrument

type and hence the rough shape. This then motivates the introduction of tem-

plates of initial parameters,[1] which rule out the vast majority of the unusual

cases previously talked about. Therefore, all further test results presented in this

section were based on a generic 3-section trumpet template. Impedance and bore

plots are presented in 4.3 and 4.4.

37



Computational Impedance Generation and Bore Optimisation for Matlab 38

Figure 4.3: Impedance Curve for 3-section Bore Optimisation

Figure 4.4: Bore Profile for 3-section Bore Optimisation

The optimiser performance seems to improve when using the template method.

In figure 4.3 the peak locations match up quite well, which is of course always

one of the primary objectives. The peak height accuracy is less impressive, which

means convergence of radius parameters is still a sticking point, as confirmed in

figure 4.4. Another notable trait of the optimiser is that it will rarely return the

correct ratios of section lengths. This is only a minor observation however, as we

are only interested in finding a bore that matches the impedance values - not the

target bore that these values are obtained from. Given that many designs may

38



Computational Impedance Generation and Bore Optimisation for Matlab 39

fit the specified data, we should bear in the mind that the target bore shape is

only included to allow the reader gauge performance of the results.

As a last piece of analysis, table 4.4 shows numerical values placed on the

accuracy of the first 5 peaks of the multi-bore case.

Table 4.4: Comparison of Optimised and Target values

Peak 1 2 3 4 5

Target Freq. (Mag) 47 (47) 135 (21) 216 (12) 296 (13) 376 (7.5)
Opt. Freq. (Mag) 49 (39) 136 (11) 210 (10) 295 (8) 375 (4)
Freq. Diff. (cents) 72 12 49 6 5
Mag. Diff (%) 17 48 17 38 47

4.1.3 Further Comments

Analysis results show that the bore optimiser can deliver reasonable results even

in complex cases. However, it is far from perfect - so naturally we should be

actively looking into how to improve it as much as possible. For the time being,

the program can at least be used to gain a ‘rough’ design and further refinements

can then be made manually by using the impedance generator.

If time permitted, it would be interesting to run the optimiser without a time

threshold and see if it could make any more headway towards the optimal solution.

The two minutes allocated for calculations for the mutli-bore case was really quite

restrictive; certainly, similar experiments carried out in [1] took anywhere from

15 minutes to several hours to attain accuracy within 0.01mm.

Note that all the target impedance curves in this section were produced using

the impedance generator and not from experimental BIAS measurements. Fur-

thermore, the target designs were always within the solution space and so getting

a perfect match was always theoretically achievable. If we do use experimental

measurements, the target design will often be outside the solution space as it will

be impossible to model it perfectly. In this case, the optimiser will still attempt

to find a solution as close to the optimal curve as possible.

4.2 Difficulties & Improvements

As a result of the discussion about optimiser performance, the focus of the project

has shifted from the practicalities of the program to offering explanations of its

39



Computational Impedance Generation and Bore Optimisation for Matlab 40

shortcomings and various methods to improve the likelihood of complete conver-

gence.

4.2.1 Sources of Difficulty

Objective Function

As already mentioned several times, with increase in bore complexity comes an

increase in the dimension of the overall problem; the consequences being a tougher

navigation space for the optimiser. It is the occurrence of local minima in the

objective function that inhibit the algorithm from finding a perfect solution all

the time, for if it finds itself in one then there are no immediate points in the

neighbourhood that will lower the objective and allow the search to continue.

As the complexity of the problem increases, so inevitably do the number of local

minimum too. Measures have already been taken to try and avoid this happening;

setting large default step sizes was one such measure.

Despite not being able to explicitly visualise any objective function above

two dimensions, we can still gain an idea of higher-dimensional behaviour by

examining 2D subspaces of O(α).[1]

Figure 4.5: 2-dimensional Slices of 6-dimensional objective function. Top Line:
Cylinder Radius vs Bell Flare; Bottom Line: Cylinder Length vs Bell Length,
Cylinder Radius vs Bell Radius

40



Computational Impedance Generation and Bore Optimisation for Matlab 41

Figure 4.5 shows several 2D subplots of a 6 dimensional problem made up of

a cylinder and bessel horn. To produce each plot, four of the parameters have

remained fixed while the two being examined are varied. It quickly emerges, as

repeatedly predicted, that the objective function becomes much more compli-

cated, with some subspaces revealing the presence of several local minima and

non-smooth behaviour. Therefore, despite our desire to keep the objective func-

tion as smooth and simple as possible, non-convex behaviour is unavoidable when

studying high-dimensional problems.

Initial Parameter Selection

The issue of initial parameter selection has already been well documented and

addressed during the multi-bore test. Regardless, even with templates the initial

parameter choice can still have a bearing on how well the algorithm will converge

to the optimum. For example, in figure 4.4 the radius of the cylindrical section

does not converge at all. This is presumably because the region of the objective

function it is based in must be too complex to navigate out of.

4.2.2 Improvements/Future Work

Much work has already gone into improving the optimiser as we go along, but

there are plenty more suggestions of areas that could be improved, or possible

methods to utilize to enhance performance. Implementing these is beyond the

scope and timescale of this project; nonetheless, they are summarised in this

section, and have much potential to be used in future work to further improve

the robustness of the optimiser.

Objective Function Improvements

The reader may have noticed that our objective function does not take into ac-

count any data on peak width and shape, which can further influence the acoustics

of a final design. The reason for this was mainly because the curves produced by

the impedance generator generally have poor shape definition, and hence would

not contribute much useful data anyway. Regardless, if further improvements

were made in the impedance generator, inclusion of a least squares compar-

ison of all points on test and target curves could enhance the reliability of the

optimiser. In the accompanying code, the objective function already includes a

bypassed version of this, so it would be an easy feature to alter in the future. A

further simple modification would be to introduce weightings on individual

41



Computational Impedance Generation and Bore Optimisation for Matlab 42

peaks. In cases like plot 4.3, the lower impedance peaks will influence the overall

sound much more than the upper ones. Therefore, prioritising matching of the

lower peaks may help the algorithm converge faster, as it will spend less time

‘fine tuning’ the minor peaks.

Another more ambitious improvement would be to look at so called smooth-

ing algorithms. These generally aim to create some sort of approximating

function to capture the most important information in a data set. Intuitively,

this could be applied to our objective function to try and iron out some of the

local minima that hinder the optimiser. A good introduction to the theory along

with some algorithms and a useful applet is located at [28].

Algorithm Improvements

There are a wealth of methods that could potentially improve the algorithm; here

we will briefly look at two. The general idea is to try and provide ways for the

optimiser to converge to as good a solution as possible.

The first technique is so-called ‘brute force methods’. The general idea

is trivial; the solution space is scanned exhaustively in an attempt to find the

optimal solution. It is not suggested that the method is used in this exact way,

as it would take huge amounts of time to do a conclusive search. Rather, we could

proceed in a similar way to 4.1.1, where a finite number of random points/tem-

plates are tested, the results logged and the closest solution selected. This is not

a particularly imaginative fix; though it is simple to initiate and can occasionally

lead to very good results.

A more sophisticated method is called simulated annealing. This is a

stochastic method, which (generally speaking) sometimes allows the search algo-

rithm to accept a rise in objective function if there is a good probability that the

corresponding direction points towards the optimal solution. A detailed overview

of the process is given in [29].

Permitted Bore Designs

The most notable restriction related to accepted bore designs was the lack of a

mouthpiece structure. This absence is problematic when attempting to find a

bore to match an impedance curve generated for a real instrument, as the mag-

nitude ‘boosting’ effect of the mouthpiece cannot be replicated. In this situation

the optimiser will try to compensate as much as possible, but inevitably cannot

produce a near-perfect match. Mouthpiece modelling was briefly attempted using

reversed cones, but problems arose when the optimiser would increase its length

42



Computational Impedance Generation and Bore Optimisation for Matlab 43

to unrealistic values, rendering the whole exercise useless. To rectify this issue, it

would be necessary in the future to develop a separate mouthpiece section with

its own set of bounds.

Efficiency Improvements

Since the code performs hundreds of evaluations a minute, any improvements in

efficiency are greatly sought after. One such improvement is related to step sizes.

Currently, the default step sizes vary according to parameter, with length steps

being at least an order of magnitude above radius steps. Normalising the steps

to unit size for use in the optimiser (with de-normalisation for objective function

calculations) is evidenced to offer better efficiency.[1]

On a more general note, there are undoubtedly many parts of the code where

efficiency can be actively improved upon. Many adjustments and improvements

carried out during the testing were implemented as rough patches. Given a bit

more time and attention, the author is confident that parts of the code can be

implemented with better finesse.

4.3 Practical Uses

Despite the main focus of this chapter having gradually veered towards detailed

discussion of performance, drawbacks and improvement, it would still be nice to

outline uses of the bore optimiser in its current guise. Therefore, to round off the

project we will study a simple example where the optimiser is used to some sort

of acoustical feature of an instrument.

4.3.1 Application: Shifting Pitch-Standard

This is a relatively basic task in which we simply aim to shift the pitch standard

of an instrument down a semitone. This essentially involves asking the optimiser

to reduce the frequency value of each impedance peak by about 50 cents. The

motivation for doing this could come from the fact that there sometimes exist

different pitch standards between acoustically identical instruments. For exam-

ple, it is observed in [8] that 17th century and modern day cornetts operate

acoustically in exactly the same way, but with a pitch standard about a semitone

apart. Therefore, it may be interesting to determine how we could alter such

a modern-day instrument to play at the same pitch as an older model, or vice

versa.

43



Computational Impedance Generation and Bore Optimisation for Matlab 44

A test ‘instrument’ was constructed from a cylinder and a bessel horn, with

α = [0.01, 1.5, 0.01 ,0.09, 0.5, 0.7]. The location of each frequency peak was

noted and the value for each detuned peak calculated. This was then assigned as

the target for the optimiser, with the bore design α set as a starting point. The

algorithm was run for 60 seconds with Npk = 10 and full weighting on both peak

location and magnitudes, producing the results displayed in figure 4.6.

Figure 4.6: Impedance plot and EFP for detuned instrument. f0 = 82 Hz

The impedance plot indicates that a reduction in pitch has resulted, but to

get a proper idea of how close it is to our target we may examine another equiv-

alent fundamental pitch plot. The results are good; the EFP clearly shows an

approximate reduction of around a semitone for each peak, and the harmonic

44



Computational Impedance Generation and Bore Optimisation for Matlab 45

relationship between peaks is almost perfectly preserved. Numerically, the ma-

jority of peaks were reduced between 40-60 cents in pitch, with extreme values

of 86 (peak 4) and 27 (peak 10). The average reduction was 50.2. Therefore, the

optimiser has been verified as a useful tool for simple design tasks like the one

we have just covered.

4.3.2 Further Applications

The optimiser can potentially be used to perform many other design alterations,

including magnitude reduction and individual peak tuning.[1] The latter may be

motivated by the observation back in section 2.2.2 that a typical characteristic

of many brass instruments is their production of a significantly flat second peak.

We then may wish to use the bore optimiser to try and sharpen this peak and

hence improve the overall harmonic alignment of the resonances. Performing this

task effectively will require further experimentation, as preliminary tests showed

that the objective function was often over-influenced by the comparatively large

peak 1 or the target impedance was too close to the initial impedance, both of

which restricting the optimiser’s flexibility. Individual peak weighting would be

a relevant solution in any future work on this problem.

45



Chapter 5

Conclusions & Appendices

This project originally set out to construct user-friendly software which could pro-

duce impedance curves from bore data and vice versa. In general, implementation

of this aim was successful - but there is always room for improvement.

The impedance generator is robust and has reasonable accuracy. While it may

not be suited to extremely fine precision, its applications can be extremely useful

for learning more about the behaviour of a particular instrument. The accuracy

of the bore optimiser needs plenty of improvement; regardless, it can still be

usefully used to produce rough designs that can be fine tuned later. Despite the

relatively simple theory, it was trickier to construct a reliable implementation

of the optimiser. The reasons for this are well-documented. While constructing

a super-accurate optimiser would have been a big ask in the time constraints

available, it was still appealing enough to implement the algorithm and see how

it performed. This provided a wealth of further motivation to explore the more

intricate details of optimisation techniques,

Asides from the theory, implementation and application, one of the enduring

ideas in this project is that the work may be constantly updated and improved in

the future. In this vein, there have been extensive discussions on improvements

needed to both the impedance generator and bore optimiser, and suggestions

tabled on how to carry them out. Many of these could be tried and tested as part

of a future project.

46



Computational Impedance Generation and Bore Optimisation for Matlab 47

Appendix I

Finite Difference Scheme Operators

This is a glossary of all the operator notation for schemes used with finite differ-

ence methods. Spacial grid points and steps are denoted as l and h respectively,

while the temporal equivalents are denoted as n and k. The identity operator is

denoted as e with an attached subscript indicating whether to move forward or

backward on the space or time axis of the grid being used. For example, ex+u
n
l

= unl+1.

Spacial Operators

δx+ ≈ 1
h
(ex+ − 1)

δx− ≈ 1
h
(1− ex−)

δx· ≈ 1
2h

(ex+ − ex−)

δxx = δx+δx− = 1
h2

(ex+ − 2 + ex−)

Temporal Operators

δt+ ≈ 1
k
(et+ − 1)

δt− ≈ 1
k
(1− et−)

δt· ≈ 1
2k

(et+ − et−)

δtt = δt+δt− = 1
k2

(et+ − 2 + et−)

Averaging Operators

µx+ ≈ 1
2
(ex+ + 1)

µx− ≈ 1
2
(1 + ex−)

µx· ≈ 1
2
(ex+ + ex−)

µxx = µx+µx− = 1
4
(ex+ + 2 + ex−)

47



Computational Impedance Generation and Bore Optimisation for Matlab 48

Appendix II

Viscothermal Losses System

A lossy version of Webster’s equation can be expressed as

SΨtt = γ2(SΨx)x − εS1/4wt (5.1)

where

wtt = εS1/4Ψt − 2σ0wt − ω2
0w (5.2)

and

ε = c

√
2ρ

M

(
π

S0

)1/4

(5.3)

M is the mass per unit area of the tube walls, ρ is the density of air, c is the

speed of sound, σ0 is a damping coefficient and ω0 is a fundamental frequency

parameter. For simplicity, M is set to equal 1. w is scaled with tube radius to

represent the ratio of radius to the viscous and thermal boundary layers.[18]

A finite difference scheme for the above is given in [12]:

µxxSδttΨ = γ2δx+((µx−S)δx−Ψ)− εS1/4δt·w (5.4)

δttw + 2σ0δt·w + ω2
0w = εS1/4δt·Ψ (5.5)

Like with the lossless case, this can then be expanded and rearranged into a

recurrence relation, which is clearly laid out in the code. The impedance generator

uses this fully lossless model for all its calculations.

48



Computational Impedance Generation and Bore Optimisation for Matlab 49

Appendix III

Detailed Bore Measurements for Section 2.2.2

Presented is a detailed description of all 11 bore sections used to reconstruct the

detailed instrument in section 2.2.2. Identifier tags are used to refer to the type

of shape used each time - to recap, 1 represents a cylinder, 2 a cone and 3 a bessel

horn. All measurments are expressed in millimeters.

Section Type r0 r1 L γ Comments

1 2 18.17 16.44 5.27 - Mouthpiece

2 2 16.44 4.22 16.53 - Mouthpiece

3 2 4.22 7.39 48.64 - Mouthpiece

4 2 7.39 9 25.55 -

5 2 10.2 10.5 6 -

6 1 10.5 - 27.9 -

7 1 10.3 - 1405 - Lead Pipe

8 1 10.8 - 124 -

9 2 10.8 12.7 70 -

10 2 12.7 14.88 140 -

11 3 14.88 108 232 0.6 Flare

Total Length = 2100mm

49



Computational Impedance Generation and Bore Optimisation for Matlab 50

A
p
p

e
n
d
ix

IV
:

S
o
u
rc

e
C

o
d
e

T
h
e

co
d
e

p
ro

v
id

ed
h
er

e
co

n
si

st
s

of
th

e
m

ai
n

sc
ri

p
ts

fo
r

th
e

im
p

ed
an

ce
ge

n
er

at
or

an
d

b
or

e
op

ti
m

is
er

.
T

h
is

m
ak

es
u
p

th
e

b
u
lk

of
th

e
ov

er
al

l
p
ro

gr
am

,
b
u
t

fo
r

cl
ar

it
y

so
m

e
of

th
e

m
or

e
co

m
p
li
-

ca
te

d
or

fr
eq

u
en

t
p
ro

ce
ss

es
w

er
e

im
p
le

m
en

te
d

as
fu

n
ct

io
n
s

in
th

ei
r

ow
n

ri
gh

t.
A

s
th

is
h
ar

d
co

p
y

of
th

e
co

d
e

is
on

ly
in

te
n
d
ed

to
ac

t

as
a

ro
u
gh

gu
id

e,
th

es
e

fu
n
ct

io
n
s

ar
e

n
ot

in
cl

u
d
ed

h
er

e.
F

u
ll

d
e-

sc
ri

p
ti

on
s

an
d

d
ir

ec
ti

on
s

of
u
se

fo
r

th
e

co
d
e

ar
e

in
cl

u
d
ed

w
it

h
th

e

d
ig

it
al

co
p
y.

Im
p

e
d

a
n

ce
G

e
n

e
ra

to
r

M
a
in

S
cr

ip
t

1 2
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
I
M
P
E
D
A
N
C
E

G
E
N
E
R
A
T
O
R

%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%

3 4
%

S
c
r
i
p
t

:
I
m
p
e
d
a
n
c
e

G
e
n
e
r
a
t
o
r

2
.
1

5
%

W
r
i
t
t
e
n

b
y

:
C
r
a
i
g

M
e
e
k

(
s
0
7
9
1
7
3
9
@
s
m
s
.
e
d
.
a
c
.
u
k
)

6
%

C
r
e
a
t
e
d

o
n

:
2
4
/
0
6
/
2
0
1
2

7
%

L
a
s
t

U
p
d
a
t
e
:

1
6
/
0
8
/
2
0
1
2

8
%

P
u
r
p
o
s
e

:
R
e
t
u
r
n
s

i
m
p
e
d
a
n
c
e

c
u
r
v
e
s

f
o
r

i
n
p
u
t

b
o
r
e

p
r
o
f
i
l
e
s

9
%

1
0
%

1
1
%

D
e
s
c
r
i
p
t
i
o
n
:

U
s
e
r

s
p
e
c
i
f
i
e
s

t
o
t
a
l

i
n
s
t
r
u
m
e
n
t

l
e
n
g
t
h

a
n
d

n
u
m
b
e
r

o
f

1
2
%

s
e
c
t
i
o
n
s
.

T
h
e

s
c
r
i
p
t

t
h
e
n

p
r
o
m
p
t
s

t
h
e

u
s
e
r

t
o

e
n
t
e
r

f
u
r
t
h
e
r

1
3
%

i
n
f
o
r
m
a
t
i
o
n

a
b
o
u
t

e
a
c
h

s
e
c
t
i
o
n
.

E
a
c
h

s
e
c
t
i
o
n

m
u
s
t

b
e

d
e
f
i
n
e
d

1
4
%

w
i
t
h

a
n

i
d
e
n
t
i
f
i
c
a
t
i
o
n

n
u
m
b
e
r

a
s

t
h
e

f
i
r
s
t

e
n
t
r
y

i
n

t
h
e

1
5
%

v
e
c
t
o
r
.

1
=

C
y
l
i
n
d
e
r
,

2
=

C
o
n
e
,

3
=

B
e
s
s
e
l

H
o
r
n
.

1
6
%

1
7
%

E
x
a
m
p
l
e
:

C
o
n
e

=
[
2
,

r
0
,

r
1
,

d
]

1
8
%

1
9
%

S
e
e

t
h
e

f
i
l
e

d
e
s
c
r
i
p
t
i
o
n
s

f
o
r

m
o
r
e

d
e
t
a
i
l
.

2
0
%

2
1
%

2
2
%

2
3
%

2
4
%
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
%

2
5
c
l
e
a
r

2
6

50



Computational Impedance Generation and Bore Optimisation for Matlab 51

2
7
%
-
-
-
U
s
e
r

I
n
p
u
t
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
%

2
8

2
9
L

=
1
.
5
;

%
T
o
t
a
l

B
o
r
e

L
e
n
g
t
h

3
0
N
S

=
3
;

%
N
u
m
b
e
r

o
f

B
o
r
e

P
r
o
f
i
l
e

S
e
c
t
i
o
n
s

3
1

3
2

3
3
%
-
-
-
G
l
o
b
a
l

P
a
r
a
m
e
t
e
r
s
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
%

3
4

3
5
F
s

=
4
4
1
0
0
;

%
S
a
m
p
l
e

R
a
t
e

(
H
z
)

3
6
c

=
3
4
7
;

%
S
o
u
n
d

V
e
l
o
c
i
t
y

a
t

2
7
C

(
m
/
s
)

3
7
t
f

=
1
;

%
S
i
m
u
l
a
t
i
o
n

D
u
r
a
t
i
o
n

(
s
)

3
8

3
9
N
F

=
r
o
u
n
d
(
t
f
*
F
s
)
;

%
T
o
t
a
l

n
u
m
b
e
r

o
f

r
e
q
u
i
r
e
d

t
i
m
e

s
a
m
p
l
e
s

4
0
g
a
m
m
a

=
c
/
L
;

4
1
k

=
1
/
F
s
;

%
T
i
m
e

S
t
e
p

4
2

4
3
h

=
g
a
m
m
a
*
k
;

N
=

f
l
o
o
r
(
1
/
h
)
;

4
4
h

=
1
/
N
;

%
S
p
a
c
i
a
l

S
t
e
p

4
5
l
a
m
b
d
a

=
g
a
m
m
a
*
k
/
h
;

%
C
o
u
r
a
n
t

N
u
m
b
e
r

4
6

4
7

4
8
%
-
-
-
I
n
s
t
r
u
m
e
n
t

P
r
o
f
i
l
e
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
%

4
9

5
0
R

=
b
o
r
e
c
o
n
s
t
r
u
c
t
i
o
n
(
N
S
,
N
,
L
)
;

%
P
r
o
m
p
t
s

u
s
e
r

t
o

d
e
f
i
n
e

e
a
c
h

b
o
r
e

s
e
c
t
i
o
n

5
1
%
R

=
o
n
e
s
(
1
,
N
+
1
)
;

%
U
s
e

t
h
i
s

l
i
n
e

f
o
r

n
o
n
-

p
r
o
m
p
t
e
d

d
e
f
i
n
i
t
i
o
n

5
2

5
3
t
i
c

5
4

5
5
S

=
p
i
.
*
(
R
.
ˆ
2
)
'
;

%
B
o
r
e

s
u
r
f
a
c
e

a
r
e
a

5
6
S
0

=
S
(
1
)
;

%
L
e
f
t

h
a
n
d

s
u
r
f
a
c
e

a
r
e
a

5
7
S

=
S
/
S
(
1
)
;

%
S
c
a
l
i
n
g

S

5
8

5
9
S
a
v

=
[
S
(
1
)
;

0
.
2
5
*
(
S
(
3
:
N
+
1
)
+
2
*
S
(
2
:
N
)
+
S
(
1
:
N
-
1
)
)
;

S
(
N
+
1
)

]
;

%
A
v
e
r
a
g
i
n
g

S

6
0

6
1

6
2
%
-
-
-
I
n
i
t
i
a
l
i
s
a
t
i
o
n
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
%

6
3

6
4
%
I
n
i
t
i
a
l
i
s
e

G
r
i
d

F
u
n
c
t
i
o
n
s

a
n
d

O
u
t
p
u
t

V
e
c
t
o
r
s

6
5
P
s
i

=
z
e
r
o
s
(
N
+
1
,
1
)
;

6
6
P
s
i
1

=
z
e
r
o
s
(
N
+
1
,
1
)
;

6
7
P
s
i
2

=
z
e
r
o
s
(
N
+
1
,
1
)
;

6
8

6
9
w

=
z
e
r
o
s
(
N
+
1
,
1
)
;

7
0
w
1

=
z
e
r
o
s
(
N
+
1
,
1
)
;

7
1
w
2

=
z
e
r
o
s
(
N
+
1
,
1
)
;

7
2

51



Computational Impedance Generation and Bore Optimisation for Matlab 52

7
3
p
r
e

=
z
e
r
o
s
(
N
F
,
1
)
;

%
T
o

s
t
o
r
e

i
m
p
e
d
a
n
c
e

r
e
a
d
i
n
g

a
t

m
o
u
t
h
p
i
e
c
e

7
4
y

=
z
e
r
o
s
(
N
F
,
1
)
;

%
O
u
t
p
u
t

V
e
c
t
o
r

(
f
o
r

p
l
a
y
i
n
g

s
o
u
n
d
)

7
5

7
6
%
I
n
p
u
t

V
e
c
t
o
r

(
I
m
p
u
l
s
e
)

7
7
u

=
z
e
r
o
s
(
N
F
,
1
)
;

7
8
u
(
1
)

=
0
.
5
;

7
9

8
0
%
S
c
h
e
m
e

T
e
m
p
l
a
t
e
s

8
1
s
r

=
0
.
5
*
l
a
m
b
d
a
ˆ
2
*
(
(
S
(
2
:
N
)
+
S
(
3
:
N
+
1
)
)
.
/
S
a
v
(
2
:
N
)
)
;

%

s
c
h
e
m
e
r
i
g
h
t

8
2
s
l

=
0
.
5
*
l
a
m
b
d
a
ˆ
2
*
(
(
S
(
2
:
N
)
+
S
(
1
:
N
-
1
)
)
.
/
S
a
v
(
2
:
N
)
)
;

%

s
c
h
e
m
e
l
e
f
t

8
3
s
0

=
2
*
(
1
-
l
a
m
b
d
a
ˆ
2
)
;

%
s
c
h
e
m
e
c
e
n
t
r
a
l

8
4

8
5

8
6
%
-
-
-
B
o
u
n
d
a
r
y

C
o
n
d
i
t
i
o
n
s
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
%

8
7

8
8
%
q
1
,
q
2
,
r
1
,
r
2

u
s
e
d

t
o

c
o
n
s
t
r
u
c
t

t
h
e

D
i
r
i
c
h
l
e
t

&
N
e
u
m
a
n
n

B
o
u
n
d
a
r
y

C
o
n
d
i
t
i
o
n
s

8
9

9
0
a
l
f

=
L
/
(
0
.
6
1
3
3
*
s
q
r
t
(
S
0
*
S
(
N
+
1
)
/
p
i
)
)
;

%
L
o
s
s

C
o
e
f
f
i
c
i
e
n
t
s

9
1
b
e
t

=
0
.
6
6
4
7
/
g
a
m
m
a
;

9
2

9
3
S
r

=
1
.
5
*
S
(
N
+
1
)
-
0
.
5
*
S
(
N
)
;

%
A
v
e
r
a
g
e

o
f

r
i
g
h
t

e
n
d

s
u
r
f
a
c
e

a
r
e
a

9
4

9
5
q
1

=
a
l
f
*
g
a
m
m
a
ˆ
2
*
k
ˆ
2
*
S
r
/
(
S
a
v
(
N
+
1
)
*
h
)
;

q
2

=
b
e
t
*
g
a
m
m
a
ˆ
2
*

k
*
S
r
/
(
S
a
v
(
N
+
1
)
*
h
)
;

9
6
r
1

=
2
*
l
a
m
b
d
a
ˆ
2
/
(
1
+
q
1
+
q
2
)
;

r
2

=
-
(
1
+
q
1
-
q
2
)
/
(
1
+
q
1
+
q
2
)
;

9
7

9
8

9
9
%
-
-
-
(
V
i
s
c
o
t
h
e
r
m
a
l
)

L
o
s
s

P
a
r
a
m
e
t
e
r
s
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
%

1
0
0

1
0
1
r
h
o

=
1
.
1
7
6
9
e
-
3
;

%
D
e
n
s
i
t
y

1
0
2
e
p

=
c
*
s
q
r
t
(
2
*
r
h
o
)
*
(
p
i
/
S
0
)
ˆ
0
.
2
5
;

%
C
o
u
p
l
i
n
g

c
o
e
f
f
i
c
i
e
n
t

1
0
3
s
i
g

=
0
.
6
;

%
D
a
m
p
i
n
g

c
o
e
f
f
i
c
i
e
n
t

1
0
4
w
0

=
1
0
0
;

%
F
u
n
d
a
m
e
n
t
a
l

f
r
e
q
u
e
n
c
y

p
a
r
a
m
e
t
e
r

1
0
5

1
0
6
S
p

=
S
.
ˆ
0
.
2
5
;

1
0
7

1
0
8

1
0
9
%
C
a
l
c
u
l
a
t
i
o
n

o
f

p
a
r
a
m
e
t
e
r
s

1
1
0
a
0

=
e
p
*
k
/
2
;

1
1
1
a
1

=
(
e
p
ˆ
2
*
k
ˆ
2
)
/
(
4
*
(
1
+
k
*
s
i
g
)
)
;

1
1
2
a
3

=
a
0
*
(
(
2
-
k
ˆ
2
*
w
0
ˆ
2
)
/
(
1
+
k
*
s
i
g
)
)
;

1
1
3
a
4

=
a
0

-
a
0
*
(
(
k
*
s
i
g
-
1
)
/
(
1
+
k
*
s
i
g
)
)
;

1
1
4

1
1
5
a
1

=
(
S
p
(
2
:
N
)
.
*
a
1
)
;

1
1
6
a
2

=
-
1
+
(
S
p
(
2
:
N
)
.
*
a
1
)
;

1
1
7
a
3

=
S
p
(
2
:
N
)
.
*
a
3
;

1
1
8
a
4

=
S
p
(
1
:
N
-
1
)
.
*
a
4
;

52



Computational Impedance Generation and Bore Optimisation for Matlab 53

1
1
9

1
2
0
a
1

=
1
.
/
(
1
+
a
1
)
;

1
2
1

1
2
2

1
2
3
%
-
-
-
M
a
i
n

L
o
o
p
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
%

1
2
4

1
2
5
f
o
r

n
=

1
:
N
F
;

1
2
6

1
2
7

%
R
e
c
u
r
s
i
v
e

R
e
l
a
t
i
o
n

1
2
8

P
s
i
(
2
:
N
)

=
s
0
*
P
s
i
1
(
2
:
N
)

+
s
l
.
*
P
s
i
1
(
1
:
N
-
1
)

+
s
r
.
*

P
s
i
1
(
3
:
N
+
1
)

+
a
2
.
*
P
s
i
2
(
2
:
N
)

-
a
3
.
*
w
1
(
2
:
N
)

+
a
4
.
*

w
2
(
1
:
N
-
1
)
;

1
2
9

P
s
i
(
2
:
N
)

=
a
1
.
*
(
P
s
i
(
2
:
N
)
)
;

1
3
0

1
3
1

1
3
2

%
B
o
u
n
d
a
r
y

C
o
n
d
i
t
i
o
n
s

1
3
3

P
s
i
(
N
+
1
)

=
r
1
*
P
s
i
1
(
N
)

+
r
2
*
P
s
i
2
(
N
+
1
)
;

1
3
4

P
s
i
(
1
)

=
s
0
*
P
s
i
1
(
1
)

+
2
*
l
a
m
b
d
a
ˆ
2
*
P
s
i
1
(
2
)

-
P
s
i
2
(
1
)

+
u
(
n
)
;

1
3
5

1
3
6

w
(
N
+
1
)

=
w
(
N
)
;

1
3
7

w
(
1
)

=
1
;

1
3
8

1
3
9

%
P
r
e
s
s
u
r
e

r
e
a
d
i
n
g

f
o
r

o
u
t
p
u
t

e
n
d

1
4
0

y
(
n
)

=
F
s
*
(
P
s
i
(
N
+
1
)

-
P
s
i
1
(
N
+
1
)
)
;

1
4
1

1
4
2

%
P
r
e
s
s
u
r
e

r
e
a
d
i
n
g

f
o
r

m
o
u
t
h
p
i
e
c
e

e
n
d

1
4
3

p
r
e
(
n
)

=
F
s
*
(
P
s
i
(
1
)

-
P
s
i
1
(
1
)
)
;

1
4
4

1
4
5

%
U
p
d
a
t
e

o
f

G
r
i
d

V
a
r
i
b
l
e
s

1
4
6

P
s
i
2

=
P
s
i
1
;

P
s
i
1

=
P
s
i
;

1
4
7

w
2

=
w
1
;

w
1

=
w
;

1
4
8

1
4
9
e
n
d

1
5
0

1
5
1
Z

=
a
b
s
(
f
f
t
(
p
r
e
)
)
;

%
I
n
p
u
t

i
m
p
e
d
a
n
c
e

1
5
2
Z

=
Z
*
1
0
ˆ
-
5
;

1
5
3
Z

=
Z
(
1
:
2
0
0
0
0
)
;

%
L
i
m
i
t
i
n
g

r
a
n
g
e

t
o

2
0
k
H
z

1
5
4

1
5
5
%
-
-
-
P
l
o
t
s
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
%

1
5
6

1
5
7
x

=
l
i
n
s
p
a
c
e
(
0
,
L
,
l
e
n
g
t
h
(
S
)
)
;

1
5
8
f

=
[
0
:
N
F
-
1
]
*
F
s
/
N
F
;

%
F
r
e
q
u
e
n
c
y

1
5
9
f

=
f
(
1
:
2
0
0
0
0
)
;

1
6
0

1
6
1
%
P
l
o
t

2
D

B
o
r
e

P
r
o
f
i
l
e

1
6
2
f
i
g
u
r
e

1
6
3
p
l
o
t
(
x
,
s
q
r
t
(
S
)
,
'
k
'
,
x
,
-
s
q
r
t
(
S
)
,
'
k
'
)
;

1
6
4
a
x
i
s
(
[
0

L
-
s
q
r
t
(
S
(
e
n
d
)
)
-
1

s
q
r
t
(
S
(
e
n
d
)
)
+
1
]
)

1
6
5
x
l
a
b
e
l
(
'
(
S
c
a
l
e
d
)

L
e
n
g
t
h
,

m
'
)

1
6
6
y
l
a
b
e
l
(
'
s
q
r
t
(
S
)
,
m
ˆ
2
'
)

1
6
7
t
i
t
l
e
(
'
B
o
r
e

P
r
o
f
i
l
e
'
)

53



Computational Impedance Generation and Bore Optimisation for Matlab 54

1
6
8

1
6
9
f
i
g
u
r
e

1
7
0

1
7
1
%
P
l
o
t
t
i
n
g

L
o
g
a
r
i
t
h
m
i
c

I
m
p
e
d
a
n
c
e

C
u
r
v
e

1
7
2
s
u
b
p
l
o
t
(
2
,
1
,
1
)

1
7
3
l
Z

=
1
0
*
l
o
g
1
0
(
Z
)
;

1
7
4
p
l
o
t
(
f
,

l
Z
,
'
b
'
)

1
7
5
a
x
i
s
(
[
0

1
0
0
0

m
i
n
(
l
Z
)
-
5

m
a
x
(
l
Z
)
+
5
]
)

1
7
6

1
7
7
x
l
a
b
e
l
(
'
F
r
e
q
u
e
n
c
y

(
H
z
)
'
)

1
7
8
y
l
a
b
e
l
(
'
Z

M
O
h
m
,

d
B
'
)

1
7
9
t
i
t
l
e
(
'
I
n
p
u
t

I
m
p
e
d
a
n
c
e
'
)

1
8
0

1
8
1

1
8
2
%
P
l
o
t
t
i
n
g

L
i
n
e
a
r

I
m
p
e
d
a
n
c
e

C
u
r
v
e

1
8
3
s
u
b
p
l
o
t
(
2
,
1
,
2
)

1
8
4
p
l
o
t
(
f
,

Z
,
'
b
'
)

1
8
5
a
x
i
s
(
[
0

1
0
0
0

0
m
a
x
(
Z
)
+
1
0
]
)

1
8
6
x
l
a
b
e
l
(
'
F
r
e
q
u
e
n
c
y

(
H
z
)
'
)

1
8
7
y
l
a
b
e
l
(
'
Z

M
O
h
m
,

d
B
'
)

1
8
8
t
i
t
l
e
(
'
I
n
p
u
t

I
m
p
e
d
a
n
c
e
'
)

1
8
9

1
9
0
%
P
l
o
t

3
D

B
o
r
e

P
r
o
f
i
l
e

1
9
1
f
i
g
u
r
e

1
9
2

1
9
3
N
R

=
l
e
n
g
t
h
(
R
)
;

1
9
4
y
1

=
z
e
r
o
s
(
2
0
,
N
R
)
;

1
9
5
z

=
z
e
r
o
s
(
2
0
,
N
R
)
;

1
9
6

1
9
7
t
h
e
t
a
=
l
i
n
s
p
a
c
e
(
0
,
2
*
p
i
,
2
0
)
;

1
9
8

1
9
9
f
o
r

n
=

1
:
2
0

2
0
0

2
0
1

y
1
(
n
,
:
)

=
R
*
c
o
s
(
t
h
e
t
a
(
n
)
)
;

2
0
2

z
(
n
,
:
)

=
R
*
s
i
n
(
t
h
e
t
a
(
n
)
)
;

2
0
3

2
0
4
e
n
d

2
0
5

2
0
6
s
u
r
f
(
x
,
y
1
,
z
)

2
0
7
a
x
i
s
(
[
0

L
-
0
.
2

0
.
2

-
0
.
2

0
.
2
]
)

2
0
8
c
o
l
o
r
m
a
p
(
c
o
o
l
)

2
0
9

2
1
0
t
o
c

2
1
1

2
1
2

2
1
3
%
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
%

2
1
4
%

V
e
r
s
i
o
n
s

:
1
.
0

-
1
s
t

s
u
c
c
e
s
s
f
u
l

i
m
p
l
e
m
e
n
a
t
i
o
n

o
f

I
m
p
e
d
a
n
c
e

G
e
n
e
r
a
t
o
r

2
1
5
%

:
2
.
0

-
M
o
d
i
f
i
e
d

t
o

m
o
d
e
l

v
i
s
c
o
t
h
e
r
m
a
l

l
o
s
s
e
s
.

2
1
6
%

:
2
.
1

-
3
D

b
o
r
e

p
r
o
f
i
l
e

p
l
o
t
s

a
d
d
e
d

2
1
7
%
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
%

54



Computational Impedance Generation and Bore Optimisation for Matlab 55

B
o
re

O
p

ti
m

is
e
r

M
a
in

S
cr

ip
t

1
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
B
O
R
E

O
P
T
I
M
I
S
E
R

%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%

2 3
%

S
c
r
i
p
t

:
B
o
r
e

O
p
t
i
m
i
s
e
r

2
.
4

4
%

W
r
i
t
t
e
n

b
y

:
C
r
a
i
g

M
e
e
k

(
c
.
m
e
e
k
@
g
m
a
i
l
.
c
o
m
)

5
%

C
r
e
a
t
e
d

o
n

:
1
1
/
0
7
/
2
0
1
2

6
%

L
a
s
t

U
p
d
a
t
e
:

1
6
/
0
8
/
2
0
1
2

7
%

P
u
r
p
o
s
e

:
R
e
t
u
r
n
s

s
u
g
g
e
s
t
e
d

b
o
r
e

p
r
o
f
i
l
e
s

f
o
r

u
s
e
r

-
s
p
e
c
i
f
i
e
d

i
m
p
e
d
a
n
c
e

8
%

c
u
r
v
e
s
.

9
%

1
0
%

1
1
%

D
e
s
c
r
i
p
t
i
o
n
:

U
s
e
r

s
p
e
c
i
f
i
e
s

t
o
t
a
l

i
n
s
t
r
u
m
e
n
t

l
e
n
g
t
h
,

n
u
m
b
e
r

o
f

1
2
%

s
e
c
t
i
o
n
s
,

t
h
e

n
a
t
u
r
e

o
f

e
a
c
h

s
e
c
t
i
o
n
,

t
h
e

n
u
m
b
e
r

o
f

p
e
a
k
s

1
3
%

t
o

b
e

t
e
s
t
e
d

a
n
d

t
h
e

t
a
r
g
e
t

i
m
p
e
d
a
n
c
e

d
a
t
a

(
i
f

d
e
s
i
r
e
d
)
.

T
h
e

1
4
%

s
c
r
i
p
t

t
h
e
n

p
r
o
m
p
t
s

t
h
e

u
s
e
r

f
o
r

t
h
e
i
r

p
r
e
f
e
r
e
n
c
e
s

o
n

h
o
w

t
o

1
5
%

i
m
p
l
e
m
e
n
t

t
h
e

a
l
g
o
r
i
t
h
m
.

U
n
f
a
m
i
l
i
a
r

u
s
e
r
s

a
r
e

r
e
c
o
m
m
e
n
d
e
d

t
o

1
6
%

r
e
a
d

t
h
e

d
e
s
c
r
i
p
t
i
o
n

o
f

f
i
l
e
s
,

w
h
i
c
h

e
x
p
l
a
i
n
s

t
h
e

v
a
r
i
o
u
s

1
7
%

i
n
p
u
t

m
e
t
h
o
d
s
.

1
8
%

1
9
%

2
0
%

2
1
%
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
%

2
2
c
l
e
a
r

2
3
c
l
o
s
e

a
l
l

2
4

2
5

2
6
%
-
-
-
P
r
e
l
i
m
i
n
a
r
y

I
n
p
u
t
s
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
%

2
7

2
8
N
S

=
2
;

%
N
u
m
b
e
r

o
f

d
e
s
i
r
e
d

b
o
r
e

s
e
c
t
i
o
n
s

2
9
N
v

=
6
;

%
N
u
m
b
e
r

o
f

v
a
r
i
a
b
l
e
s

3
0
N
p
k

=
1
0
;

%
N
u
m
b
e
r

o
f

p
e
a
k
s

t
o

u
s
e

w
i
t
h

o
b
j
e
c
t
i
v
e

f
u
n
c
t
i
o
n

3
1

3
2
s
e
c
t
i
o
n
t
y
p
e

=
[
1
,
3
]
;

%
O
r
d
e
r

o
f

s
e
c
t
i
o
n

t
y
p
e
s

3
3

3
4
%
T
a
r
g
e
t

i
m
p
e
d
a
n
c
e

d
a
t
a

(
i
f

u
s
i
n
g
)

3
5
Z
t
l
o
c

=
[
4
9

1
4
6

2
3
6

3
1
9

3
9
7

4
8
1

5
6
5

6
4
7

7
2
7

8
1
1
]
;

%

p
e
a
k

l
o
c
a
t
i
o
n

3
6
Z
t
p
e
a
k
s

=
[
4
7

1
9

1
5

1
0

6
5

3
1

1
1
]
;

%
p
e
a
k

h
e
i
g
h
t

3
7

55



Computational Impedance Generation and Bore Optimisation for Matlab 56

3
8

3
9

4
0
%
-
-
-
P
r
e
l
i
m
i
n
a
r
y

O
p
t
i
o
n
a
l

I
n
p
u
t
s
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
%

4
1

4
2
r
a
d
i
u
s
b
o
u
n
d
s

=
[
0
.
0
0
5
,
0
.
1
]
;

4
3
l
e
n
g
t
h
b
o
u
n
d
s

=
[
0
.
1
,
2
.
5
]
;

4
4
b
e
s
s
e
l
b
o
u
n
d
s

=
[
0
.
6
,
0
.
8
]
;

4
5

4
6
r
a
d
i
u
s
s
t
e
p

=
0
.
5
;

4
7
l
e
n
g
t
h
s
t
e
p

=
1
;

4
8
b
e
s
s
e
l
s
t
e
p

=
0
.
5
;

4
9

5
0
t
i
m
e
t
h
r
e
s
h

=
6
0
;

5
1
s
t
e
p
t
h
r
e
s
h

=
1
e
-
5
;

5
2
j
u
m
p
l
i
m
i
t

=
0
.
0
0
1
;

%
L
a
r
g
e
s
t

p
e
r
m
i
t
t
e
d

r
a
d
i
u
s

`
j
u
m
p
'

b
e
t
w
e
e
n

s
e
c
t
i
o
n
s

5
3

5
4
a

=
3
;

%
S
t
e
p

m
u
l
t
i
p
l
i
c
a
t
i
o
n

p
a
r
a
m
e
t
e
r

(
S
u
c
c
e
s
s
)

5
5
b

=
0
.
5
;

%
S
t
e
p

m
u
l
t
i
p
l
i
c
a
t
i
o
n

p
a
r
a
m
e
t
e
r

(
F
a
i
l
)

5
6

5
7
W
t

=
[
1
,
1
]
;

%
W
e
i
g
h
t
i
n
g

f
o
r

o
b
j
e
c
t
i
v
e

f
u
n
c
t
i
o
n

5
8

5
9
r
d

=
1
0
0
0
;

%
R
o
u
n
d
i
n
g

p
a
r
a
m
e
t
e
r

(
1
0
0
0

=
3

d
.
p
)

6
0

6
1

6
2
%
-
-
-
P
r
o
m
p
t
e
d

I
n
p
u
t
-
(
D
o

n
o
t

e
d
i
t

b
e
l
o
w

h
e
r
e
)
-
-
-
-
-
-
-
-
-
-
-
-

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
%

6
3

6
4
%
S
e
l
e
c
t
i
n
g

a
t
a
r
g
e
t

i
m
p
e
d
a
n
c
e

c
u
r
v
e

o
r

t
a
r
g
e
t

b
o
r
e

6
5
I
N
P
U
T

=
i
n
p
u
t
(
s
p
r
i
n
t
f
(
'
W
o
u
l
d

y
o
u

l
i
k
e

t
o

s
e
t

a
t
a
r
g
e
t

i
m
p
e
d
a
n
c
e

o
r

a
t
a
r
g
e
t

b
o
r
e
?

1
=

i
m
p
e
d
a
n
c
e
,

2
=

b
o
r
e
:

'
)
)
;

6
6

6
7
%
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
%

6
8
i
f

I
N
P
U
T

=
=

1
%
T
a
r
g
e
t

i
m
p
e
d
a
n
c
e

6
9

7
0

Z
t

=
z
e
r
o
s
(
1
,
2
2
0
5
0
)
;

%
I
n
i
t
i
a
l
i
s
i
n
g

t
a
r
g
e
t

i
m
p
e
d
a
n
c
e

v
e
c
t
o
r

7
1

Z
t
(
Z
t
l
o
c
)

=
Z
t
p
e
a
k
s
;

7
2

T
L

=
0
;

7
3

T
R

=
0
;

7
4

7
5

%
D
e
f
i
n
i
n
g

t
h
e

n
a
t
u
r
e

o
f

t
h
e

i
n
i
t
i
a
l

p
a
r
a
m
e
t
e
r
s

7
6

S
T
A
R
T

=
i
n
p
u
t
(
s
p
r
i
n
t
f
(
'
I
n
i
t
i
a
l

P
a
r
a
m
e
t
e
r
s
?

1
=

R
a
n
d
o
m
,

2
=

M
a
n
u
a
l
:
'
)
)
;

7
7

7
8

i
f

S
T
A
R
T

=
=

1
%
R
a
n
d
o
m

i
n
i
t
i
a
l

p
a
r
a
m
e
t
e
r
s

7
9

8
0

A
l
p

=
i
n
i
t
i
a
l
p
o
i
n
t
g
e
n
e
r
a
t
o
r
(
s
e
c
t
i
o
n
t
y
p
e
,

r
a
d
i
u
s
b
o
u
n
d
s
,
l
e
n
g
t
h
b
o
u
n
d
s
,
b
e
s
s
e
l
b
o
u
n
d
s
,
N
S

,
N
v
)
;

56



Computational Impedance Generation and Bore Optimisation for Matlab 57

8
1

A
l
p

=
j
u
m
p
l
i
m
i
t
e
r
(
s
e
c
t
i
o
n
t
y
p
e
,
A
l
p
,
N
S
,

j
u
m
p
l
i
m
i
t
)
;

8
2

S
t
a
r
t
P
a
r
a
m

=
A
l
p
;

8
3

8
4

e
l
s
e
i
f

S
T
A
R
T

=
=

2
%
M
a
n
u
a
l
l
y

i
n
p
u
t

i
n
i
t
i
a
l

p
a
r
a
m
e
t
e
r
s

8
5

8
6

A
l
p

=
i
n
p
u
t
(
s
p
r
i
n
t
f
(
'
I
n
p
u
t

s
t
a
r
t
i
n
g

p
o
i
n
t
:
'
)
)
'
;

8
7

A
l
p

=
j
u
m
p
l
i
m
i
t
e
r
(
s
e
c
t
i
o
n
t
y
p
e
,
A
l
p
,
N
S
,

j
u
m
p
l
i
m
i
t
)
;

8
8

S
t
a
r
t
P
a
r
a
m

=
A
l
p
;

8
9

9
0

e
n
d

9
1

9
2

9
3

%
C
a
l
c
u
l
a
t
i
n
g

i
n
i
t
i
a
l

i
m
p
e
d
a
n
c
e

v
a
l
u
e
s

a
n
d

o
b
j
e
c
t
i
v
e

f
u
n
c
t
i
o
n

r
a
t
i
n
g

9
4

L
=

l
e
n
g
t
h
g
e
n
e
r
a
t
o
r
(
s
e
c
t
i
o
n
t
y
p
e
,
A
l
p
,
N
S
)
;

9
5

I
R

=
r
a
d
i
u
s
g
e
n
e
r
a
t
o
r
(
s
e
c
t
i
o
n
t
y
p
e
,
A
l
p
,
N
S
,
L
)
;

9
6

Z
=

i
m
p
e
d
a
n
c
e
g
e
n
e
r
a
t
o
r
o
p
t
(
L
,
I
R
)
;

9
7

9
8

t
h
r
e
s
h

=
o
n
e
s
(
1
,
N
v
)
;

9
9

1
0
0

O
b
j

=
o
b
j
e
c
t
i
v
e
f
u
n
c
t
(
Z
,
Z
t
,
N
p
k
,
W
t
)
;

%
I
n
i
t
i
a
l

o
b
j
e
c
t
i
v
e

v
a
l
u
e

1
0
1

1
0
2

1
0
3
e
l
s
e
i
f

I
N
P
U
T

=
=

2
%
T
a
r
g
e
t

b
o
r
e

1
0
4

1
0
5

%
D
e
f
i
n
i
n
g

t
a
r
g
e
t

b
o
r
e

1
0
6

T
a
r
g
e
t

=
i
n
p
u
t
(
s
p
r
i
n
t
f
(
'
I
n
p
u
t

t
a
r
g
e
t

b
o
r
e

d
i
m
e
n
s
i
o
n
s
:
'
)
)
'
;

1
0
7

1
0
8

1
0
9

S
T
A
R
T

=
i
n
p
u
t
(
s
p
r
i
n
t
f
(
'
S
t
a
r
t
i
n
g

P
o
i
n
t
?

1
=
R
a
n
d
o
m
,

2
=

M
a
n
u
a
l
:
'
)
)
;

1
1
0

1
1
1

i
f

S
T
A
R
T

=
=

1
%
R
a
n
d
o
m

i
n
i
t
i
a
l

p
a
r
a
m
e
t
e
r
s

1
1
2

1
1
3

A
l
p

=
i
n
i
t
i
a
l
p
o
i
n
t
g
e
n
e
r
a
t
o
r
(
s
e
c
t
i
o
n
t
y
p
e
,

r
a
d
i
u
s
b
o
u
n
d
s
,
l
e
n
g
t
h
b
o
u
n
d
s
,
b
e
s
s
e
l
b
o
u
n
d
s
,

N
S
,
N
v
)
;

1
1
4

A
l
p

=
j
u
m
p
l
i
m
i
t
e
r
(
s
e
c
t
i
o
n
t
y
p
e
,
A
l
p
,
N
S
,

j
u
m
p
l
i
m
i
t
)
;

1
1
5

S
t
a
r
t
P
a
r
a
m

=
A
l
p
;

1
1
6

1
1
7

e
l
s
e
i
f

S
T
A
R
T

=
=

2
%
M
a
n
u
a
l
l
y

i
n
p
u
t

i
n
i
t
i
a
l

p
a
r
a
m
e
t
e
r
s

1
1
8

1
1
9

A
l
p

=
i
n
p
u
t
(
s
p
r
i
n
t
f
(
'
I
n
p
u
t

s
t
a
r
t
i
n
g

p
o
i
n
t
:
'
)
)

'
;

1
2
0

A
l
p

=
j
u
m
p
l
i
m
i
t
e
r
(
s
e
c
t
i
o
n
t
y
p
e
,
A
l
p
,
N
S
,

j
u
m
p
l
i
m
i
t
)
;

1
2
1

S
t
a
r
t
P
a
r
a
m

=
A
l
p
;

57



Computational Impedance Generation and Bore Optimisation for Matlab 58

1
2
2

1
2
3

e
n
d

1
2
4

1
2
5

A
l
p

=
r
o
u
n
d
(
(
A
l
p
*
r
d
)
)
/
r
d
;

1
2
6

1
2
7

%
C
a
l
c
u
l
a
t
i
n
g

i
n
i
t
i
a
l

i
m
p
e
d
a
n
c
e

v
a
l
u
e
s

a
n
d

o
b
j
e
c
t
i
v
e

f
u
n
c
t
i
o
n

r
a
t
i
n
g

1
2
8

L
=

l
e
n
g
t
h
g
e
n
e
r
a
t
o
r
(
s
e
c
t
i
o
n
t
y
p
e
,
A
l
p
,
N
S
)
;

1
2
9

I
R

=
r
a
d
i
u
s
g
e
n
e
r
a
t
o
r
(
s
e
c
t
i
o
n
t
y
p
e
,
A
l
p
,
N
S
,
L
)
;

1
3
0

Z
=

i
m
p
e
d
a
n
c
e
g
e
n
e
r
a
t
o
r
o
p
t
(
L
,
I
R
)
;

1
3
1

1
3
2

%
C
a
l
c
u
l
a
t
i
n
g

t
a
r
g
e
t

i
m
p
e
d
a
n
c
e

v
a
l
u
e
s

1
3
3

T
L

=
l
e
n
g
t
h
g
e
n
e
r
a
t
o
r
(
s
e
c
t
i
o
n
t
y
p
e
,
T
a
r
g
e
t
,
N
S
)
;

1
3
4

T
R

=
r
a
d
i
u
s
g
e
n
e
r
a
t
o
r
(
s
e
c
t
i
o
n
t
y
p
e
,
T
a
r
g
e
t
,
N
S
,
T
L
)
;

1
3
5

Z
t

=
i
m
p
e
d
a
n
c
e
g
e
n
e
r
a
t
o
r
o
p
t
(
T
L
,
T
R
)
;

1
3
6

1
3
7

1
3
8

N
F

=
l
e
n
g
t
h
(
Z
t
)
;

1
3
9

t
h
r
e
s
h

=
A
l
p

-
T
a
r
g
e
t
;

%
S
t
e
p

t
h
r
e
s
h
o
l
d

v
e
c
t
o
r

1
4
0

1
4
1
O
b
j

=
o
b
j
e
c
t
i
v
e
f
u
n
c
t
(
Z
,
Z
t
,
N
p
k
,
W
t
)
;

%
I
n
i
t
i
a
l

o
b
j
e
c
t
i
v
e

v
a
l
u
e

1
4
2

1
4
3
e
n
d

1
4
4

1
4
5
%
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

1
4
6

1
4
7

1
4
8
%
-
-
-
D
e
r
i
v
e
d

P
a
r
a
m
e
t
e
r
s
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
%

1
4
9

1
5
0
%
U
p
p
e
r

a
n
d

l
o
w
e
r

b
o
u
n
d
s

1
5
1
b
o
u
n
d
s

=
b
o
u
n
d
s
g
e
n
e
r
a
t
o
r
(
s
e
c
t
i
o
n
t
y
p
e
,
l
e
n
g
t
h
b
o
u
n
d
s
,

r
a
d
i
u
s
b
o
u
n
d
s
,
b
e
s
s
e
l
b
o
u
n
d
s
,
N
S
,
N
v
)
;

1
5
2
l
o
w
e
r

=
b
o
u
n
d
s
(
:
,
1
)
;

1
5
3
u
p
p
e
r

=
b
o
u
n
d
s
(
:
,
2
)
;

1
5
4

1
5
5
%
S
t
e
p

s
i
z
e
s

f
o
r

e
a
c
h

d
i
m
e
n
s
i
o
n

1
5
6
s
t
e
p
s
i
z
e

=
s
t
e
p
g
e
n
e
r
a
t
o
r
(
s
e
c
t
i
o
n
t
y
p
e
,
l
e
n
g
t
h
s
t
e
p
,

r
a
d
i
u
s
s
t
e
p
,
b
e
s
s
e
l
s
t
e
p
,
N
S
,
N
v
)
;

1
5
7

1
5
8
%
D
i
r
e
c
t
i
o
n

m
a
t
r
i
x

1
5
9
D

=
e
y
e
(
N
v
)
;

1
6
0

1
6
1

1
6
2
%
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
%

1
6
3
%
-
-
-
M
A
I
N

A
L
G
O
R
I
T
H
M
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
%

1
6
4

1
6
5
t
i
c

1
6
6

58



Computational Impedance Generation and Bore Optimisation for Matlab 59

1
6
7
%
-
-
-
E
x
p
l
o
r
a
t
o
r
y

S
t
a
g
e
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
%

1
6
8

1
6
9
w
h
i
l
e

m
a
x
(
a
b
s
(
t
h
r
e
s
h
)
)

>
s
t
e
p
t
h
r
e
s
h
|
m
a
x
(
a
b
s
(
l
)
)

>

s
t
e
p
t
h
r
e
s
h
|
t
o
c

<
t
i
m
e
t
h
r
e
s
h

%
T
e
r
m
i
n
a
t
i
o
n

c
r
i
t
e
r
i
a

1
7
0

1
7
1

1
7
2
X
=
z
e
r
o
s
(
2
,
N
v
)
;

%
V
e
c
t
o
r

t
o

k
e
e
p

t
r
a
c
k

o
f

s
u
c
c
e
s
s
/
f
a
i
l
u
r
e

i
n

e
a
c
h

d
i
r
e
c
t
i
o
n

1
7
3
l
a
m
b
d
a

=
z
e
r
o
s
(
1
,
N
v
)
;

%
V
e
c
t
o
r

t
o

h
o
l
d

s
u
m

o
f

s
u
c
c
e
s
s
f
u
l

s
t
e
p
s

1
7
4
l

=
s
t
e
p
s
i
z
e
;

1
7
5

1
7
6

1
7
7

w
h
i
l
e

n
n
z
(
X
)
6=
n
u
m
e
l
(
X
)

%
W
o
n
'
t

e
x
i
t

t
h
e

l
o
o
p

u
n
t
i
l

s
u
c
c
e
s
s

a
n
d

f
a
i
l
u
r
e

i
n

e
a
c
h

d
i
r
e
c
t
i
o
n

1
7
8

1
7
9

f
o
r

i
i

=
1
:
N
v

1
8
0

1
8
1

A
l
p
t
e
m
p

=
A
l
p
;

%
S
t
o
r
i
n
g

c
u
r
r
e
n
t

v
a
l
u
e

o
f

a
l
p
h
a

1
8
2

A
l
p

=
A
l
p

+
l
(
i
i
)
*
D
(
:
,
i
i
)
;

%
E
x
p
l
o
r
i
n
g

n
e
w

b
o
r
e

d
e
s
i
g
n

1
8
3

1
8
4

A
l
p

=
r
o
u
n
d
(
(
A
l
p
*
r
d
)
)
/
r
d
;

%
R
o
u
n
d
i
n
g

1
8
5

1
8
6

A
l
p

=
j
u
m
p
l
i
m
i
t
e
r
(
s
e
c
t
i
o
n
t
y
p
e
,
A
l
p
,
N
S
,

j
u
m
p
l
i
m
i
t
)
;

%
R
e
s
t
r
i
c
t
i
n
g

a
n
y

j
u
m
p
s

o
v
e
r

t
h
r
e
s
h
o
l
d

1
8
7

L
=

l
e
n
g
t
h
g
e
n
e
r
a
t
o
r
(
s
e
c
t
i
o
n
t
y
p
e
,
A
l
p
,
N
S
)
;

%

C
a
l
c
u
l
a
t
i
n
g

l
e
n
g
t
h

o
f

n
e
w

d
e
s
i
g
n

1
8
8

R
=

r
a
d
i
u
s
g
e
n
e
r
a
t
o
r
(
s
e
c
t
i
o
n
t
y
p
e
,
A
l
p
,
N
S
,
L
)
;

%
C
a
l
c
u
l
a
t
i
n
g

n
e
w

r
a
d
i
u
s

v
a
l
u
e
s

1
8
9

1
9
0

1
9
1

t
h
r
e
s
h
(
i
i
)

=
A
l
p
(
i
i
)

-
A
l
p
t
e
m
p
(
i
i
)
;

%

U
p
d
a
t
i
n
g

t
h
r
e
s
h
o
l
d

v
e
c
t
o
r

1
9
2

1
9
3

1
9
4
%
-
-
-
C
h
e
c
k
i
n
g

i
f

n
e
w

d
e
s
i
g
n

i
s

o
u
t
s
i
d
e

b
o
u
n
d
s

1
9
5

b
o
u
n
d
s
t
e
s
t

=
z
e
r
o
s
(
1
,
N
v
)
;

1
9
6

1
9
7

f
o
r

j
j

=
1
:
N
v

1
9
8

1
9
9

i
f

A
l
p
(
j
j
)

>
u
p
p
e
r
(
j
j
)
|
A
l
p
(
j
j
)

<

l
o
w
e
r
(
j
j
)

2
0
0

2
0
1

b
o
u
n
d
s
t
e
s
t
(
j
j
)

=
1
;

2
0
2

2
0
3

e
l
s
e

2
0
4

2
0
5

b
o
u
n
d
s
t
e
s
t
(
j
j
)

=
0
;

2
0
6

59



Computational Impedance Generation and Bore Optimisation for Matlab 60

2
0
7

e
n
d

2
0
8

2
0
9

e
n
d

2
1
0

2
1
1

2
1
2

i
f

n
n
z
(
b
o
u
n
d
s
t
e
s
t
)

>
0
|
R

=
=

1
;

2
1
3

2
1
4

%
D
e
s
i
g
n

u
n
a
c
c
e
p
t
a
b
l
e
;

o
u
t
s
i
d
e

b
o
u
n
d
s

2
1
5

O
b
j
1

=
I
n
f
;

2
1
6

2
1
7

e
l
s
e

2
1
8

2
1
9

%
D
e
s
i
g
n

a
c
c
e
p
t
a
b
l
e
;

c
a
l
c
u
l
a
t
i
n
g

n
e
w

i
m
p
e
d
a
n
c
e

a
n
d

r
a
t
i
n
g

2
2
0

Z
n

=
i
m
p
e
d
a
n
c
e
g
e
n
e
r
a
t
o
r
o
p
t
(
L
,
R
)
;

2
2
1

O
b
j
1

=
o
b
j
e
c
t
i
v
e
f
u
n
c
t
(
Z
n
,
Z
t
,
N
p
k
,
W
t
)

;

2
2
2

2
2
3

e
n
d

2
2
4

2
2
5

2
2
6
%
-
-
-
D
e
t
e
r
m
i
n
i
n
g

s
u
c
c
e
s
s

o
r

f
a
i
l
u
r
e

o
f

n
e
w

d
e
s
i
g
n

2
2
7

i
f

O
b
j
1
≤
O
b
j

2
2
8

2
2
9

l
(
i
i
)

=
a

*
l
(
i
i
)
;

%
S
u
c
c
e
s
s
;

i
n
c
r
e
a
s
i
n
g

s
t
e
p

s
i
z
e

2
3
0

O
b
j

=
O
b
j
1
;

2
3
1

2
3
2

d
i
s
p
(
'
I
m
p
r
o
v
e
d

D
e
s
i
g
n
:
'
)

2
3
3

A
l
p

2
3
4

2
3
5

l
a
m
b
d
a
(
i
i
)

=
l
a
m
b
d
a
(
i
i
)

+
l
(
i
i
)
;

%

U
p
d
a
t
i
n
g

t
o
t
a
l

d
i
s
p
l
a
c
e
m
e
n
t

2
3
6

X
(
1
,
i
i
)

=
1
;

%
L
o
g
g
i
n
g

s
u
c
c
e
s
s

2
3
7

2
3
8

e
l
s
e

2
3
9

2
4
0

l
(
i
i
)

=
-
b

*
l
(
i
i
)
;

%
F
a
i
l
u
r
e
;

d
e
c
r
e
a
s
i
n
g

s
t
e
p

s
i
z
e

&
r
e
v
e
r
s
i
n
g

d
i
r
e
c
t
i
o
n

2
4
1

A
l
p

=
A
l
p
t
e
m
p
;

%
R
e
v
e
r
t
i
n
g

t
o

o
l
d

d
e
s
i
g
n

2
4
2

2
4
3

X
(
2
,
i
i
)

=
1
;

%
L
o
g
g
i
n
g

f
a
i
l

2
4
4

2
4
5

e
n
d

2
4
6

2
4
7

2
4
8

2
4
9

e
n
d

2
5
0
%
-
-
-
E
n
d

o
f

e
x
p
l
o
r
a
t
i
o
n

l
o
o
p
;

t
h
i
s

k
e
e
p
s

r
u
n
n
i
n
g

u
n
t
i
l

e
v
e
r
y

e
n
t
r
y

i
n

X
i
s

1

2
5
1
%

(
i
e
.

S
u
c
c
e
s
s

a
n
d

f
a
i
l

i
n

e
a
c
h

d
i
r
e
c
t
i
o
n
)

2
5
2

60



Computational Impedance Generation and Bore Optimisation for Matlab 61

2
5
3

2
5
4
%
-
-
-
M
i
d
-
a
l
g
o
r
i
t
h
m

t
e
r
m
i
n
a
t
i
o
n

c
r
i
t
e
r
i
a

2
5
5

i
f

m
a
x
(
a
b
s
(
l
)
)

<
s
t
e
p
t
h
r
e
s
h

2
5
6

2
5
7

d
i
s
p
(
'
A
l
g
o
r
i
t
h
m

T
e
r
m
i
n
a
t
e
d
:

S
t
e
p

s
i
z
e

b
e
l
o
w

t
h
r
e
s
h
o
l
d
'
)

2
5
8

d
i
s
p
(
'
I
n
i
t
i
a
l

P
a
r
a
m
e
t
e
r
s
:
'
)

2
5
9

S
t
a
r
t
P
a
r
a
m

2
6
0

2
6
1

d
i
s
p
(
'
O
p
t
i
m
i
s
e
d

D
e
s
i
g
n
:
'
)

2
6
2

A
l
p

2
6
3

2
6
4

t
o
c

2
6
5

2
6
6

o
p
t
p
l
o
t
(
Z
n
,
Z
t
,
R
,
L
,
T
L
,
T
R
,
I
R
)

%
P
l
o
t
t
i
n
g

r
e
s
u
l
t
s

2
6
7

r
e
t
u
r
n

2
6
8

2
6
9

e
l
s
e
i
f

t
o
c

>
t
i
m
e
t
h
r
e
s
h

2
7
0

2
7
1

d
i
s
p
(
'
A
l
g
o
r
i
t
h
m

T
e
r
m
i
n
a
t
e
d
:

T
i
m
e

T
h
r
e
s
h
o
l
d

M
e
t
'
)

2
7
2

d
i
s
p
(
'
I
n
i
t
i
a
l

P
a
r
a
m
e
t
e
r
s
:
'
)

2
7
3

S
t
a
r
t
P
a
r
a
m

2
7
4

2
7
5

d
i
s
p
(
'
O
p
t
i
m
i
s
e
d

D
e
s
i
g
n
:
'
)

2
7
6

A
l
p

2
7
7

2
7
8

t
o
c

2
7
9

2
8
0

o
p
t
p
l
o
t
(
Z
n
,
Z
t
,
R
,
L
,
T
L
,
T
R
,
I
R
)

%
P
l
o
t
t
i
n
g

r
e
s
u
l
t
s

2
8
1

2
8
2

r
e
t
u
r
n

2
8
3

2
8
4

e
l
s
e
i
f

O
b
j

=
=

0

2
8
5

2
8
6

d
i
s
p
(
'
P
e
r
f
e
c
t

M
a
t
c
h
!
'
)

2
8
7

d
i
s
p
(
'
S
t
a
r
t
i
n
g

P
a
r
a
m
e
t
e
r
s
:
'
)

2
8
8

S
t
a
r
t
P
a
r
a
m

2
8
9

2
9
0

d
i
s
p
(
'
O
p
t
i
m
i
s
e
d

D
e
s
i
g
n
:
'
)

2
9
1

A
l
p

2
9
2

2
9
3

t
o
c

2
9
4

2
9
5

o
p
t
p
l
o
t
(
Z
n
,
Z
t
,
R
,
L
,
T
L
,
T
R
,
I
R
)

%
P
l
o
t
t
i
n
g

r
e
s
u
l
t
s

2
9
6

2
9
7

r
e
t
u
r
n

2
9
8

2
9
9

e
l
s
e

3
0
0

3
0
1

e
n
d

61



Computational Impedance Generation and Bore Optimisation for Matlab 62

3
0
2

3
0
3

3
0
4

e
n
d

3
0
5

3
0
6

3
0
7

3
0
8
%
-
-
-
O
r
t
h
o
g
o
n
a
l
i
s
a
t
i
o
n

S
t
a
g
e
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
%

3
0
9

3
1
0

3
1
1
%
-
-
-
P
r
e
a
m
b
l
e

3
1
2
L
D

=
z
e
r
o
s
(
N
v
)
;

%
S
t
e
p

m
a
t
r
i
x

3
1
3
D
s
t
o
r
e

=
D
;

%
S
t
o
r
i
n
g

d
i
s
t
a
n
c
e

m
a
t
r
i
x

3
1
4

3
1
5

3
1
6
%
-
-
-
F
i
l
l
i
n
g

i
n

s
t
e
p

m
a
t
r
i
x

3
1
7

f
o
r

i
i

=
1
:
N
v

3
1
8

f
o
r

k
k

=
i
i
:
N
v

3
1
9

L
D
(
:
,
i
i
)

=
L
D
(
:
,
i
i
)

+
l
a
m
b
d
a
(
k
k
)

*
D
(
:
,
k
k
)
;

3
2
0

e
n
d

3
2
1

e
n
d

3
2
2

3
2
3

3
2
4
%
-
-
-
C
a
l
c
u
l
a
t
i
n
g

n
e
w

d
i
r
e
c
t
i
o
n

v
e
c
t
o
r
s

3
2
5
D
(
:
,
1
)

=
L
D
(
:
,
1
)

/
n
o
r
m
(
L
D
(
:
,
1
)
)
;

%
F
i
r
s
t

d
i
r
e
c
t
i
o
n

v
e
c
t
o
r

u
s
i
n
g

G
r
a
m
-
S
c
h
m
i
d
t

p
r
o
c
e
s
s

3
2
6

3
2
7

3
2
8

%
P
a
l
m
e
r

o
r
t
h
o
g
o
n
a
l
i
s
a
t
i
o
n

u
p

t
o

N
v
-
1

3
2
9

f
o
r

i
i

=
2
:
N
v
-
1

3
3
0

3
3
1

3
3
2

i
f

l
a
m
b
d
a
(
i
i
-
1
)

=
=

0
;

3
3
3

3
3
4

%
A
v
o
i
d
i
n
g

t
h
e

z
e
r
o

d
e
n
o
m
i
n
a
t
o
r

c
a
s
e

3
3
5

D
(
:
,
i
i
)

=
-
D
s
t
o
r
e
(
:
,
i
i
-
1
)
;

3
3
6

3
3
7

e
l
s
e

3
3
8

3
3
9

3
4
0

n
u
m
e
r
a
t
o
r

=
(
l
a
m
b
d
a
(
i
i
-
1
)

*
L
D
(
:
,
i
i
)
)

-
(

D
s
t
o
r
e
(
:
,
i
i
-
1
)

*
n
o
r
m
(
L
D
(
:
,
i
i
)
)
ˆ
2
)
;

3
4
1

d
e
n
o
m
i
n
a
t
o
r

=
n
o
r
m
(
L
D
(
:
,
i
i
-
1
)
)

*
n
o
r
m
(
L
D
(
:
,
i
i
)
)

;

3
4
2

3
4
3

D
(
:
,
i
i
)

=
n
u
m
e
r
a
t
o
r
.
/
d
e
n
o
m
i
n
a
t
o
r
;

3
4
4

3
4
5

e
n
d

3
4
6

3
4
7

e
n
d

3
4
8

3
4
9

3
5
0

%
P
a
l
m
e
r

o
r
t
h
o
g
o
n
a
l
i
s
a
t
i
o
n

f
o
r

N
v

-
a

p
a
t
c
h

t
o

a
v
o
i
d

z
e
r
o

d
e
n
o
m
i
n
a
t
o
r

62



Computational Impedance Generation and Bore Optimisation for Matlab 63

3
5
1

i
f

l
a
m
b
d
a
(
N
v
)

=
=

0

3
5
2

3
5
3

D
(
:
,
N
v
)

=
D
s
t
o
r
e
(
:
,
N
v
)
;

3
5
4

3
5
5

e
l
s
e
i
f

l
a
m
b
d
a
(
N
v
-
1
)

=
=

0

3
5
6

3
5
7

D
(
:
,
N
v
)

=
-
D
s
t
o
r
e
(
:
,
N
v
-
1
)
;

3
5
8

3
5
9

e
l
s
e

3
6
0

3
6
1

n
u
m
e
r
a
t
o
r

=
(
l
a
m
b
d
a
(
N
v
-
1
)

*
L
D
(
:
,
N
v
)
)

-
(
D
s
t
o
r
e

(
:
,
N
v
-
1
)

*
n
o
r
m
(
L
D
(
:
,
N
v
)
)
ˆ
2
)
;

3
6
2

d
e
n
o
m
i
n
a
t
o
r

=
n
o
r
m
(
L
D
(
:
,
N
v
-
1
)
)

*
n
o
r
m
(
L
D
(
:
,
N
v
)
)
;

3
6
3

3
6
4

D
(
:
,
N
v
)

=
n
u
m
e
r
a
t
o
r
.
/
d
e
n
o
m
i
n
a
t
o
r
;

3
6
5

3
6
6

e
n
d

3
6
7

3
6
8
d
i
s
p
(
'
O
r
t
h
o
g
o
n
a
l
i
s
a
t
i
o
n

c
o
m
p
l
e
t
e
'
)

3
6
9

3
7
0
e
n
d

3
7
1

3
7
2
t
o
c

3
7
3
d
i
s
p
(
'
A
l
g
o
r
i
t
h
m

T
e
r
m
i
n
a
t
e
d
;

T
h
r
e
s
h
o
l
d

m
e
t
'
)

3
7
4
d
i
s
p
(
'
I
n
i
t
i
a
l

P
a
r
a
m
e
t
e
r
s
:
'
)

3
7
5
S
t
a
r
t
P
a
r
a
m

3
7
6

3
7
7
d
i
s
p
(
'
O
p
t
i
m
i
s
e
d

D
e
s
i
g
n
:
'
)

3
7
8
A
l
p

3
7
9

3
8
0

3
8
1
%
-
-
-
P
l
o
t

R
e
s
u
l
t
s

3
8
2
o
p
t
p
l
o
t
(
Z
n
,
Z
t
,
R
,
L
,
T
L
,
T
R
,
I
R
)

3
8
3

3
8
4

3
8
5
%
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
%

3
8
6
%

V
e
r
s
i
o
n
s

:
1
.
0

-
1
s
t

s
u
c
c
e
s
s
f
u
l

i
m
p
l
e
m
e
n
a
t
i
o
n

o
f

B
o
r
e

O
p
t
i
m
i
s
e
r

3
8
7
%

:
2
.
0

-
M
o
d
i
f
i
e
d

t
o

p
r
o
d
u
c
e

p
l
o
t
s
.

3
8
8
%

:
2
.
1

-
l
a
m
b
d
a
(
N
v
)

=
0

p
a
t
c
h

a
d
d
e
d
.

3
8
9
%

:
2
.
2

-
R
a
d
i
u
s
,

l
e
n
g
t
h
s
,

b
o
u
n
d
s

a
n
d

s
t
e
p

g
e
n
e
r
a
t
o
r
s

a
d
d
e
d

3
9
0
%

:
2
.
3

-
j
u
m
p
s
e
c
t
i
o
n

p
a
t
c
h

a
d
d
e
d

3
9
1
%

:
2
.
4

-
R
o
u
n
d
i
n
g

p
a
r
a
m
e
t
e
r

a
d
d
e
d

3
9
2
%
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
%

63



Bibliography

[1] Braden, A.C.P (2006) Bore Optimisation and Impedance Modelling of Brass

Musical Instruments PhD Thesis, University of Edinburgh.

[2] Braden, A.C.P (2005) Optimisation Techniques for Solving Design Prob-

lems in Modern Trombones (Proceedings of Forum Acusticum, Budapest,

pp.2569-2572)

[3] Noreland, D.J.O (2003) A Gradient Based Optimisation Algorithm for the

Design of Brass-Wind Instruments PhD Thesis, Department of Information

Technology, Uppsala University.

[4] Noreland, D.J.O.; Udawalpola, M.R.; Berggren, M.O. (2010) A Hybrid

Scheme for Bore Design Optimization of a Brass Instrument Journal of the

Acoustical Society of America, Vol 128, No. 3 (Sept. 2010) pp.1391-1400

[5] Kausel, W (1999) Computer Optimization of Brass Wind Instruments Insti-

tut für Wiener Klangstil, Vienna, Austria. Available at: http://iwk.mdw.

ac.at/mitarbeiter/english/wk/paper%20diderot.pdf [accessed 27 June

2012]

[6] Amir, N.; Shimony, U.; Rosenhouse, G (1995) A Discrete Model for Tubu-

lar Acoustic Systems with Varying Cross Section - The Direct and Inverse

Problems Acustica, Vol 81, No.5 (Sept. 1995) pp.450-462

[7] Campbell, Murray; Greated, Clive (1987) The Musician’s Guide to Acoustics

(Ch9: Brass Instruments, pp.303-366). Cambridge Unversity Press

[8] Campbell, Murray (1996) Cornett Acoustics: Some Experimental Studies

The Galpin Society Journal, Vol 49 (Mar. 1996) pp.180-196. Available at:

http://www.jstor.org/stable/842398 [accessed 23 March 2012]

[9] Fletcher, Neville H.; Rossing, Thomas D. (1991) The Physics of Musical

Instruments (Ch14: Lip Driven Brass Instruments, pp.365-375, 383-384).

Cambridge University Press

64

http://iwk.mdw.ac.at/mitarbeiter/english/wk/paper%20diderot.pdf
http://iwk.mdw.ac.at/mitarbeiter/english/wk/paper%20diderot.pdf
http://www.jstor.org/stable/842398


Computational Impedance Generation and Bore Optimisation for Matlab 65

[10] Wolfe, Joe. (2012) What is Acoustic Impedance? (Music Acoustics, Univer-

sity New South Wales). Available at: http://www.phys.unsw.edu.au/jw/

z.html [accessed 10 March 2012]

[11] Braden, Alistair C.P; Newton, Michael J; Campbell, Murray (2005) Opti-

mising the Harmonicity of Trombones. University of Edinburgh

[12] Bilbao, Stefan (2009) Numerical Sound Synthesis (Ch5: Grid functions and

finite difference operators in 1D, pp.93-105; Ch9: Acoustic Tubes, pp.249-

278). John Wiley & Sons, Ltd

[13] Bilbao, Stefan (2011) Time Domain Simulation of Brass Instruments

University of Edinburgh. Available at: http://edinburgh.academia.edu/

StefanBilbao/Papers/1014125/Time_Domain_Simulation_of_Brass_

Instruments [accessed 14 Apr 2012]

[14] Webster, A.G (1919) Acoustical impedance, and the theory of horns and the

phonograph (Proceedings of the National Academy of Sciences of the United

States of America, pp.275-282)

[15] Silva, F.; Guillemain, P.; Kergomard, B.; Mallaroni, B.; Norris, A. (2009)

Approximation formulae for the acoustic radiation impedance of a cylindrical

pope (Journal of Sound and Vibration, Vol 322, pp.255-263)

[16] Zhilin Li (2001) Finite Difference Methods Basics (Computational Mathe-

matics: Models, Methods and Analysis.) Center for Research in Scientific

Computation, North Carolina State University. Available at: http://www4.

ncsu.edu/~zhilin/TEACHING/MA402/notes1.pdf [accessed 31 July 2012]

[17] Wogram, Klaus (1972) The Summation Principle (A Contribution to the

Measurement of the Intonation of Brass Instruments, Ch 3.2.3). Carolo-

Wilhelmina Technical University of Braunschweig

[18] Keefe, Douglas (1984) Acoustical wave propagation in cylindrical ducts:

Transmission line parameter approximations for isothermal and nonisother-

mal boundary conditions Journal of the Acoustical Society of America, Vol

75, no. 1, pp.58-62.

[19] Meek, C (2012) An Initial Study into the Acoustics of the Serpent, MSc

mini-project, University of Edinburgh.

[20] Backus, J (1976) Input impedance curves for the brass instruments J. Acoust.

Soc America, Vol 60, No. 2 pp.470-480.

65

http://www.phys.unsw.edu.au/jw/z.html
http://www.phys.unsw.edu.au/jw/z.html
http://edinburgh.academia.edu/StefanBilbao/Papers/1014125/Time_Domain_Simulation_of_Brass_Instruments
http://edinburgh.academia.edu/StefanBilbao/Papers/1014125/Time_Domain_Simulation_of_Brass_Instruments
http://edinburgh.academia.edu/StefanBilbao/Papers/1014125/Time_Domain_Simulation_of_Brass_Instruments
http://www4.ncsu.edu/~zhilin/TEACHING/MA402/notes1.pdf
http://www4.ncsu.edu/~zhilin/TEACHING/MA402/notes1.pdf


Computational Impedance Generation and Bore Optimisation for Matlab 66

[21] Gondzio, Jacek (2012) Convex Optimisation, from MATH11044 Practical &

Large Scale Optimisation. School of Mathematics, Edinburgh University.

[22] Rosenbrock, H.H (1960) An automatic method for finding the greatest or

least value of a function The Computer Journal, Vol.4, pp.175-184.

[23] Poš́ık, Petr (2001) Rosenbrock’s Algorithm: Should We Reset the Multipliers

After Each Coordinate System Update? Dept. of Cybernetics, Czech Techni-

cal University, Prague. Available at: http://labe.felk.cvut.cz/~posik/

papers/Rosenbrock/RosOrigVsRosMod.pdf [accessed 20 July 2012]

[24] Palmer, J.R (1969) An improved procedure for orthogonalising the search

vectors in Rosenbrock’s and Swann’s direct search optimisation methods The

Computer Jorunal, Vol.12, No.1, pp.69-71.

[25] Weisstein, Eric W. (2012) Gram-Schmidt Orthonormalization From

MathWorld–A Wolfram Web Resource. Available at: http://mathworld.

wolfram.com/Gram-SchmidtOrthonormalization.html [accessed 29 July

2012]

[26] Weisstein, Eric W. (2012) Gaussian Function From MathWorld–A Wol-

fram Web Resource. Available at: http://mathworld.wolfram.com/

GaussianFunction.html [accessed 30 July 2012]

[27] Author Unknown. (2007) Rosenbrock Method Available at: http://hi.

baidu.com/fwso/blog/item/25bc2b3f7b3ce4ee54e72396.html [accessed

23 July 2012]

[28] Efstathiou, C. E. Signal Smoothing Algorithms Department of Chemistry,

University of Athens. Available at: http://www.chem.uoa.gr/applets/

appletsmooth/appl_smooth2.html [accessed 8 Aug 2012]

[29] Kirkpatrick, S. Gelatt, C. D., Vecchi, M. P. (1983) Optimization by Simulated

Annealing Science, Vol.220, No.4598, pp.671-680. Available at: http://www.

fisica.uniud.it/~ercolessi/MC/kgv1983.pdf [accessed 8 Aug 2012]

[30] Kausel, W. Brass Instrument Analysis System. http://www.bias.at

[31] ‘Levels’ & ‘Fourier’ Analysis Software Resources for Acoustics, Univer-

sity of Edinburgh. Available at: http://www2.ph.ed.ac.uk/acoustics/

teaching/acoustics/index.html

66

http://labe.felk.cvut.cz/~posik/papers/Rosenbrock/RosOrigVsRosMod.pdf
http://labe.felk.cvut.cz/~posik/papers/Rosenbrock/RosOrigVsRosMod.pdf
http://mathworld.wolfram.com/Gram-SchmidtOrthonormalization.html
http://mathworld.wolfram.com/Gram-SchmidtOrthonormalization.html
http://mathworld.wolfram.com/GaussianFunction.html
http://mathworld.wolfram.com/GaussianFunction.html
http://hi.baidu.com/fwso/blog/item/25bc2b3f7b3ce4ee54e72396.html
http://hi.baidu.com/fwso/blog/item/25bc2b3f7b3ce4ee54e72396.html
http://www.chem.uoa.gr/applets/appletsmooth/appl_smooth2.html
http://www.chem.uoa.gr/applets/appletsmooth/appl_smooth2.html
http://www.fisica.uniud.it/~ercolessi/MC/kgv1983.pdf
http://www.fisica.uniud.it/~ercolessi/MC/kgv1983.pdf
http://www.bias.at
http://www2.ph.ed.ac.uk/acoustics/teaching/acoustics/index.html
http://www2.ph.ed.ac.uk/acoustics/teaching/acoustics/index.html

	Abstract
	Contents
	Impedance Generation
	Initial Discussion and Theory
	Input Impedance
	Webster's Equation
	Boundary Conditions

	Modelling Impedance
	Finite Difference Schemes
	Scheme for Webster's Equation
	Defining the Bore Profile
	Implementation of Impedance Generator


	Experiment and Analysis of Impedance Generator
	Experimental and Analytical Tools
	BIAS
	Equivalent Fundamental Pitch
	Sum Function

	Accuracy Tests
	Test 1: Simple Cylinder
	Test 2: A More Complicated Bore Profile
	Further Comments

	Practical Uses
	Application 1: Prediction of Notes with the Sum Function
	Application 2: Bore Alteration


	Bore Optimisation
	Initial Discussion
	Rosenbrock Algorithm
	Outline

	Objective Function
	Implementation of Bore Optimiser

	Experiment and Analysis of the Bore Optimiser
	Accuracy & Performance Tests
	Test 1: Optimising Single Sections
	Test 2: A More Challenging Optimisation
	Further Comments

	Difficulties & Improvements
	Sources of Difficulty
	Improvements/Future Work

	Practical Uses
	Application: Shifting Pitch-Standard
	Further Applications


	Conclusions & Appendices

