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Abstract

When assessing the quality of a brass instrument the player must consider

a number of factors, the main consideration being the playability of the chosen

instrument. The playability of an instrument is a broad term used to describe

how well the instrument plays; this includes how in tune the resonant modes are,

how easy it is to start and move between notes, how easy it is to bend notes and

the degree of spectral enrichment during a crescendo that is able to be produced.

The starting transient is known to be of crucial importance for both the

musician and listener, and previous work in the field has been mainly concerned

with such starting transients; this work focusses on inter-note transitions.

Transitions between notes include both starting and finishing transients as the

initial note is ended and the next begun. Using high speed photography images

synchronised with pressure signals from the mouthpiece and bell end, the inter-

note transitions are explored. Results from these experiments are compared with

those from a simple one dimensional time domain model.

Other techniques used to determine the playability of a specific instrument

include the rate at which the instrument timbre becomes ‘brassy’ due to nonlinear

effects, that are a consequence of loud playing. The relative significance of

viscothermal wall losses and nonlinear effects within realistic brass instruments

have been explored here using experiments on cylindrical tubes of different

internal diameters. These experimental results are compared with results from a

computational model that uses weakly nonlinear wave propagation theory and

includes viscothermal losses. It is also possible on some brass instruments,

when playing loudly, to achieve what are known as super high notes; these

notes are above the frequency where the instrument has well defined resonances.

Experimental results are presented here using optical techniques to visualise the

motion of the player’s lips during playing of these super high notes.
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Nomenclature

General symbols

Symbol Explanation
z specific acoustic impedance
ω angular frequency
p(ω) acoustic pressure
u(ω) acoustic particle velocity
Z acoustic impedance
S cross sectional area
U(ω) acoustic volume flow
νn frequency
n harmonic number
l effective length
c speed of sound in air
D tube diameter
a bore radius
x distance along bore from input
Γ flare rate
F nonlinear function
∆P pressure difference
U(t) volume velocity
ρ density of air
h(t) lip opening height
c0 small signal speed of sound
γ ratio of specific heat at constant pressure to specific heat

at constant volume
Xs distance to shock wave formation
Patm atmospheric pressure
pin input pressure
L tube length
B brassiness potential parameter
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Lecl equivalent conical length
f1 nominal fundamental frequency
pout output pressure
Q monopole source strength
d distance from monopole source to point of measurement
u(bell) acoustic particle velocity at bell exit plane
T transfer function
α viscothermal attenuation coefficient
ZL radiation impedance
Z0 characteristic impedance of tube
Ψ velocity potential
Ψn

l grid function
Γ Gold’berg number
M Mach number

Abbreviations

Abbreviation Explanation
FFT Fast Fourier Transform
RMS Root Mean Square
FDTD Finite Difference Time Domain
T 14 Transfer function between microphones 1 and 4
SC 1 Spectral Centroid at microphone 1

Musical Dynamics

pp pianissimo ‘very soft’
p piano ‘soft’

mp mezzo-piano ‘moderately soft’
mf mezzo-forte ‘moderately loud’
f forte ‘loudly’
ff fortissimo ‘very loudly’
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Chapter 1

Introduction

The brass instrument family has developed throughout history to contain many

weird, and wonderful instruments, along with the well known modern selection

of instruments commonly available today. Although brass instruments in their

present form are well recognised, there is a common misconception that the

instruments are categorised, and so called, because of the material used in their

manufacture. Firstly, not all brass instruments are made from brass (their main

material could be silver, copper, wood or even plastic), and secondly, they are

categorised based on the manner in which they are sounded. Brass instruments

can also be called labrosones which literally means ‘lip-vibrated instruments’

[Baines 93]. The player’s lips are pressed over the input end of the instrument

and when ‘buzzed’ together the air blown through the lips is modulated in such

a way as to excite the air column within the instrument, and thus produce the

sounded notes. It is this common excitation method that leads to the classification

of such instruments.

When thinking about brass instruments in a simple conceptual manner, they

do not strike one as being particularly complex; the player’s lips open and close

periodically, which provides the instrument with a periodic oscillating pressure

wave. If the lips are vibrating at a frequency close to one of the resonant modes of

the instrument, the pressure wave is reinforced within the instrument. When the

pressure wave reaches the end of the instrument, some of the sound is radiated

to the atmosphere, while a portion will be reflected back towards the input end

and create a standing wave. The realities of this simple concept are not quite as

simple however.
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The nature of the lip motion is one of the most complex parts of a brass

instrument system, and one of the most difficult to study. In many cases the

lips have been modelled as a mass on a spring approximation, and this has been

successful up to a point. The lips do not, however, move in just one dimension,

as with a one mass/spring model, and it has been found that the lip motion is

in all three dimensions [Cullen 00b]. It can also be the case that simultaneously

different parts of the lips are moving in different directions. Therefore to model

the lip motion correctly the model would need to consist of more than one mass

and spring. To assist in understanding the lip motion, the use of high speed

photography of the lips has proved to be a non-intrusive way to view the lip

motion during playing. Even with the best understanding of the instrument,

and the physics of what is happening inside it during playing, we do not have a

full understanding of the complete system until we understand the nature of the

motion of the lips and the coupling between them and the instrument itself.

The nature of the lip motion is further complicated by the fact that it is

part of a nonlinear coupled system. The lips control the air flow into the

instrument, which in turn affects the behaviour of the lips as there is a complicated

feedback system between these components. The pressure wave which leaves

the player’s lips is subject to a number of factors as it propagates to the end

of the instrument, and back to the lips, where it can then reinforce the lip

motion. At high amplitudes, the pressure wave is subject to highly nonlinear

effects as it propagates down the instrument [Fletcher 99a]; this acts to increase

the amplitude of the higher harmonics and hence increase spectral enrichment.

There is also an opposing reduction in the higher harmonics due to the frequency

dependent viscothermal losses that the wave is subject to during propagation.

The complex system of a brass instrument is not yet fully understood, but

in studying this it also has a further reaching goal than to satisfy scientists with

increased knowledge. Players assess instruments by their ‘playability’; this is a

term which generally means how well the player perceives an instrument to play.

The playability of a specific instrument can be determined by its tonal qualities,

the ease with which notes can be started and moved between, how easy it is to

bend notes around the resonant modes using the lips to make slight alterations to

the played frequency, and the degree of spectral enrichment that can be produced

during a crescendo. Players are very sensitive to how an instrument plays and
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how they can gain the most appealing sound from the instrument; this however is

very hard to quantify. Brass instrument playing involves much feedback from the

instrument which is interpreted by the player as feel and sound, again both are

difficult quantities to verbalise and quantify. To be able to rank instruments by

their playability would lessen the need for players to express their feelings on an

instrument, when assessing it, and give a more direct comparative factor between

instruments.

With a fuller understanding of the mechanics and physics behind brass

instruments and them being played, it should be possible to determine a

playability factor for instruments, and be able to theoretically assess the overall

quality of a given instrument. With this understanding, manufacturers will

hopefully be able to use this knowledge to optimise instruments for the best

playability.
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1.1. Aims

1.1 Aims

The broad aim of this thesis is to carry out a series of experimental studies,

along with comparisons to computational simulations, that are aimed at trying

to broaden the understanding of some of the playability issues discussed above,

specifically the following aims:

• Explore slurred transients on brass instruments through high speed filming

of the player’s lips, synchronised with pressure data from inside the

mouthpiece and radiated from the bell.

• Use a forced oscillation excitation source to explore the behaviour of the

pressure in the mouthpiece and radiated from the bell of the instrument

during a slurred transient.

• Compare experimentally determined player and forced oscillation results

with a time domain computational model.

• Use transfer function measurements and high speed photography of the

player’s lips to determine if there is significant reinforcement for the lips at

extremely high frequencies on the trumpet.

• Use transfer function and spectral centroid measurements to explore the

relative significance of nonlinear effects and viscothermal losses within

cylindrical tubes as simple brass instruments.

• Compare cylindrical tubes measurements with a computational simulation

to determine whether the nonlinear effects or viscothermal losses are the

dominant factor in brass instruments.
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1.2. Contents

1.2 Contents

Chapter 2 gives an overview of the relevant acoustic theory for this thesis. The

role of the player’s lips and associated behaviour is discussed. This chapter also

includes a discussion of the ‘brassy’ sound of brass instruments, and the relevant

importance of the nonlinearities and losses in the system.

Chapter 3 presents experimental work on transients. The transients work is

concerned with slurred transitions between two resonant modes of the instrument.

The experimental techniques used in this chapter include high speed photography

of the player’s lips and forced oscillation of the system by means of a loudspeaker.

Chapter 4 details the computational investigation into transients, as discussed

experimentally in Chapter 3. A one dimensional finite difference time domain

model is used and results compared directly with player and loudspeaker data

presented in Chapter 3.

Chapter 5 discusses extreme high notes on trumpets. Some expert players

are able to play notes well above the normal playing range of the trumpet;

this chapter presents some preliminary results of the transfer function of a

trumpet/mouthpiece combination used for playing extreme high notes.

Chapter 6 gives a discussion of the relative importance of nonlinear effects

and viscothermal losses. Experiments and results are presented using cylindrical

tubes as a simple brass instrument to explore these effects. Experimental results

are also compared with those from a computational simulation based on weakly

nonlinear propagation theory.

Chapter 7 presents a summary of the conclusions from this thesis, along with

suggestions for further work in this area.

Appendix A contains extra figures of slurred transients on a horn, relating to

those in Section 3.3.2.

Appendix B shows extra figures relating to the individual tubes spectral

centroid results as discussed in Section 6.5.2.
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Chapter 2

Brass wind instrument acoustics

There are a number of textbooks on musical acoustics that give detailed

descriptions of the theory of brass instrument acoustics; such as [Backus 77,

Benade 76, Campbell 87, Fletcher 98]. An overview of the experimental and

theoretical research in the field of brass instrument work was presented in

[Campbell 04]. A thorough review of the theory that is relevant to this work

and mention of the associated literature is presented in this chapter.

2.1 Overview

Brass instruments all operate under the same principle and generally have the

same components which make it possible for the instrument to produce sound.

In a simplistic manner it is possible to think of the instrument as comprising of

three main parts: the lips which act as a mechanical oscillator; the air column

within the instrument which acts as the acoustic resonator; and the airflow which

couples these two parts together.

Figure 2.1 shows the three parts of the system combined to form a feedback

loop. This feedback loop is created as the player induces a pressure difference

across the lips as they blow. This pressure difference causes the lips to oscillate

which in turn creates an acoustic pressure signal at the input of the instrument.

The lips act as a valve in the system and are referred to as a lip-reed with regards

to brass instruments, serving the same purpose as a cane reed in woodwind

acoustics. The player’s lips receive acoustical feedback from the resonating air

column within the instrument, which itself affects the behaviour of the lips.
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2.2. The resonator - the air column

Flow Radiated Sound

Resonator

Acoustic Pressure

Static

Mouth

Pressure

Valve

Figure 2.1: A basic model of a wind instrument. A brass instrument can be
thought of as three parts: resonator, pressure controlled valve and the air flow
through the system. The air column acts as the resonator, and the lips as the
valve which controls the air flow.

At this point it is convenient to split the study of brass instruments into four

sections [Carrall 06], these being:

• Behaviour of the resonator (air column or instrument bore)

• Behaviour of the mechanical oscillator (lip reed)

• Coupling between instrument and lip reed

• Nonlinearities in the system.

2.2 The resonator - the air column

2.2.1 Impedance

The specific acoustic impedance, z, is a useful place to begin when wishing to

describe the acoustics of brass instruments. Here z is a function of angular

frequency, ω, and is defined as the ratio of acoustic pressure p(ω) to the acoustic

particle velocity u(ω).

z(ω) =
p(ω)

u(ω)
(2.1)

The acoustic impedance Z at a surface, S, is defined as the ratio of the acoustic

pressure, p(ω), to the acoustic volume flow through the surface U(ω):

Z(ω) =
p(ω)

U(ω)
(2.2)
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2.2. The resonator - the air column

where U(ω) = u(ω)S.

The input impedance of a brass instrument is defined as the acoustic

impedance, Z, at the entrance plane of the instrument. It is also a function

of angular frequency and describes the strength of pressure variation for a given

amount of alternating flow of air through the player’s lips and into the instrument.

The input impedance can be measured experimentally and an input impedance

curve produced using the Brass Instrument Analysis System [BIAS 13], as shown

in Figure 2.2. Each resonance of the air column within the bore of the instrument

corresponds to a peak on the impedance curve [Fletcher 98]. Generally the

playing frequencies of the instrument are very close to one of those resonances;

with the exception of the pedal note, the lowest note that can be played, where

the playing frequency cannot be assigned to the lowest resonance peak as it lies

around a musical fifth higher [Gilbert 08a], the input impedance peaks give the

frequencies at which the instrument will sound.
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Figure 2.2: Typical input impedance of a brass instrument. This example is of a
5-valve tuba in F.
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2.2. The resonator - the air column

2.2.2 Simple resonator approximation

The player’s lips modulate the air flow into the instrument; this allows a periodic

modulation of high and low pressures. The pressure wave that is produced can be

taken, as a first approximation, to be a plane wave. This resulting pressure wave

propagates along the air column within the instrument and is partially reflected

at any changes in acoustic impedance. Impedance changes, and hence partial

reflections, could occur where there is a change in the cross section of the bore,

a tone hole, a joint in the wall material and also at the end of the instrument.

While some of the pressure wave is reflected at the end of the instrument, some

of the sound is radiated to the surrounding atmosphere. A standing wave will

be set up within the instrument if the air column has a resonance close to the

frequency of the pressure wave.

Some brass instruments are largely cylindrical in design, for at least a

considerable proportion of their length. This is true for the trombone, trumpet

and (to a lesser extent) the horn.

As the instrument has the player’s lips at one end, this effectively makes the

instrument a cylinder closed at one end. As a result of this the air column inside

the instrument has a pressure antinode at the lips and a pressure node at the bell.

In the ideal case of a perfect cylinder closed at one end the instrument would have

a harmonic series of resonances at frequencies:

νn =
2n− 1

4l
c (2.3)

where n is the harmonic number (1,2,3...), l is the effective length of the cylinder,

and c is the speed of sound in air. The effective length denoted here is not

equal to the physical length of the tube. The anti-node at the end of the

tube is approximately D/3 outside the end of the tube, where D is the tube

diameter; hence making the effective length, l, longer than the physical length of

the instrument by D/3 [Campbell 87].

This simple instrument would only be able to play the odd harmonics, (1,3,5...)

and so would be of limited use [Fletcher 98]. Real brass instruments, however,

are not this simple, and have a more complicated shape and design.
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2.2. The resonator - the air column

2.2.3 Real brass instrument shape

There are many shapes and sizes of brass wind instruments, but the majority

share a number of common features: a section of tubing that is made up from

cylindrical and conical sections (with approximately circular cross section), a

rapidly flaring bell and a cup shaped mouthpiece. Most instruments have a means

to change the sounding length of the tubing by valves, a slide or even tone holes

(this is uncommon however). Some instruments such as the natural trumpet are of

fixed length. All of these features contribute to determining the actual resonances

of the instrument and mean that real instruments cannot be treated as a simple

closed cylinder. It is fundamental to the playability of the instrument that these

components are designed correctly to achieve the most beneficial set of resonances

[Benade 76]. Equation 2.3 gives the series of resonances of a simple cylinder; to

play an instrument with only these resonances would produce only odd-numbered

members of a harmonic series. In a real brass instrument the combination of the

effects of the mouthpiece and bell give a series of resonances that are close to a

complete harmonic series apart from the fundamental [Campbell 87].

2.2.4 Mouthpiece effect

A brass instrument mouthpiece consists of two main parts; the cup and the shank.

The player places the lips into the cup of the mouthpiece and the shank is the

tapered tube which fits into the instrument. Ideally there should be a smooth

join between the end of the shank and the instrument bore so the shank radius is

approximately equal to that of the bore at this end, whereas at the mouthpiece

end the shank radius is much smaller than the instrument bore. When the player

has placed the lips inside the mouthpiece a volume of air is enclosed which acts as

a simple Helmholtz resonator [Campbell 87] and therefore has its own resonance

determined by the volume of air that is enclosed and the area of the opening in

the shank of the mouthpiece. The mouthpiece acting as a Helmholtz resonator

has two resulting effects; it reduces the frequencies of the higher modes of the

instrument [Backus 77] along with strengthening some of the resonances of the

instrument around the mouthpiece resonant frequency [Benade 76].
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2.2. The resonator - the air column

2.2.5 Bell effect

The bell of a brass instrument has a dual effect on the sound produced. The flaring

bell acts as a high pass filter, which improves the radiation of higher frequency

components of the sound; this is what gives brass instruments their distinctive

sound and timbre. Because of this high pass filter effect brass instruments are

highly directional with the majority of the sound being radiated in the direction

that the bell is pointing. The other effect that the bell has on the sound is that it

raises the frequency of the lower modes in the instrument. The shape of a brass

instrument can be approximated to that of a Bessel horn [Benade 59, Benade 74]

and can be described using:

a = b(x+ x0)−Γ (2.4)

where a is the bore radius, x is the distance along the bore from the mouth

of the horn which is located at position x0. b and x0 are chosen to give the

correct radii at each end of the horn, and Γ defines the rate of flare (where 0.7

is a realistic value for instruments such as trumpets and trombones [Young 60]).

Benade [Benade 76] calculated the approximate resonance frequencies, νn, for this

model at the throat in the following:

νn ≈
c

4(l + x0)

{
(2n− 1) + β[Γ(Γ + 1)]1/2

}
(2.5)

where c is the speed of sound, l is the horn length, and β is a parameter equal

to approximately 0.6 for Γ < 0.8 and 0.7 for Γ > 0.8 [Fletcher 98].

In effect, the effective length of the air column is shorter at low frequencies,

where the wavelength is longest, and cannot ‘see’ the bell [Campbell 87] as the bell

radius is smaller than the wavelength; this has the effect of raising the frequency

of the lowest modes.

Taking into account the effects of both the mouthpiece and bell we can see

that the higher mode frequencies are lowered and the lower mode frequencies

are raised. Therefore, the combined effect of the whole instrument and

components creates resonances which are very close to a complete harmonic series.

Nevertheless, the fundamental mode of the instrument is still an exception to

this statement. The fundamental mode exhibits some very interesting different

behaviour [Gilbert 08a].
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2.3. The lips - mechanical oscillator

2.3 The lips - mechanical oscillator

Much of the mechanics of brass instrument playing and the motion of the lips is

driven by the player’s intuition rather than conscious manipulation of the lips.

When players wish to sound a note on a brass instrument they force their lips to

periodically open and close. In many ways, modelling the lips in the way of a mass

on a spring has been successful; this is the most basic approximation that can be

associated with the oscillatory motion of the lips. The lips, however, move in a

more complicated way than this one mass model can describe. The lips are made

up of soft tissue and muscle, and players have great control over many aspects

of their lip motion; they can greatly vary the tension, shape and mechanical

properties of their lips. The lips do not just move in one dimension but in all

three; it is entirely possible that adjacent parts of the lip are moving in different

directions simultaneously. Studies [Martin 42] have shown that the lips exhibit

motion in the vertical plane of lip opening and also horizontally perpendicular

to this plane. It is the horizontal motion of the lips that causes the air to be

displaced by the lips. However, it is assumed that this horizontal motion does

not significantly affect the air flow through the lip channel and it is the overall

open area of the lips that control the flow [Cullen 00b]. Both lips are interacting

with the air column within the instrument, the rim of the mouthpiece, the teeth,

the opposing lip and the air flow through the lips, resulting in a complicated

system.

2.3.1 Pressure controlled valve

The player’s lips are the component that allows the air flow from the lungs into the

instrument to be regulated; this is in the form of an oscillating flow which couples

to the instrument producing a self-sustaining oscillation. The lip-reed’s oscillation

is controlled by the air flow into the instrument as well as itself controlling this

air flow. For this self-sustained oscillation to be produced, the lip-reed must add

energy to the system in such a way as to balance the energy lost to friction and

radiation etc.

Like most reeds, the lip-reed acts as a closed end for the instrument; this means

there is a pressure anti-node at the input of the instrument. At this pressure anti-

node the pressure fluctuates above and below a mean value. The geometry of the

12



2.3. The lips - mechanical oscillator

reed determines the way in which the reed responds to the pressure fluctuations

and this leads to how the reed is classified.

2.3.2 Inward and outward striking reeds

A musical reed can be thought of as a valve mechanism, controlled by the pressure

change that happens across the valve. In a brass wind instrument the player

places the mouthpiece on the lips and then blows into the mouthpiece; this creates

a static overpressure upstream of the reed, hence giving a pressure difference over

the valve.

U U

p

p

p

P
0

P
0

P
0

U

(−,+) (+,−) (+,+)

Figure 2.3: Simplified models of pressure controlled valves. From left to right:
inward striking reed, outward striking reed, sideways striking reed. Adapted from
[Fletcher 98].

Helmholtz [Helmholtz 77] was responsible for the majority of the earliest

work into the physical properties of wind instruments, including brass wind

instruments. The first attempt at classifying musical valves was made by

Helmholtz; he attempted to classify valves (reeds) by their response to change in

pressure. Helmholtz description of the reed behaviour was expanded by Fletcher

[Fletcher 93, Fletcher 98]. Fletcher and Rossing [Fletcher 98] use the notation

(σ1,σ2) to classify the types of reeds. σ1 has the classification of +1 if there is

a larger pressure at the inlet side of the valve and it tends to open, and −1 if

13



2.3. The lips - mechanical oscillator

it tends to close. Likewise, σ2 shows the effect of the pressure at the outlet of

the valve, again having +1 and -1 classifications. Helmholtz called the (−1,+1)

valve the ‘inward-striking’ reed and the (+1,−1) as the ‘outward-striking’ reed.

There is another combination which has been called the ‘sideways-striking’ or

‘sliding-door’ reed and this is (+1,+1). There doesn’t appear to be any musical

use for the combination (−1,−1). The 3 types of reed are shown schematically

in Figure 2.3.

In instruments such as the saxophone or clarinet, with cane reeds, the valve

mechanism has been decidedly classified as being ‘inward-striking’. ‘Inward-

striking’ means that the reed closes in response to an increase in static pressure

at the input and these instrument reeds can be well represented by the mass

on a spring one-mass model, as shown in [Bilbao 08, Dalmont 95, Dalmont 03].

The lip-reed in brass instruments, however, has not yet been able to be classified

in the same way [Yoshikawa 95, Chen 96, Newton 08, Cullen 00a]. Due to this

uncertainty it makes it extremely difficult to describe the lip-reed using a single

degree-of-freedom model.

There have been some very successful attempts at modelling the lip-reed

in this manner; these studies generally approximate the lip-reed to be mostly

‘outward-striking’. A number of the most successful attempts are detailed in

[Adachi 96, Vergez 00, Msallam 00].

2.3.3 Photographic study of the lips

Photographic techniques to view brass player’s lip motion have been pursued for

many years with work beginning in the 1940s by Martin [Martin 42]. Martin

used a stroboscopic technique to photograph the lip motion of a cornet player.

This work by Martin led to more attempts at viewing and recording the motion

of the lips during playing [Yoshikawa 95, Copley 95, Richards 03, Bromage 07,

Stevenson 09b]. These investigations have proved very successful in broadening

the understanding of the lip-reed and its behaviour under near real playing

circumstances. Along with this work in photographing real human lips while

playing, a substantial amount of work has been done using artificial lips. The first

development of an artificial mouth is detailed in [Gilbert 97]. There have been a

number of further artificial mouth designs and experiments using these to sound

brass instruments [Gilbert 98, Neal 01, Bromage 03, Petiot 03, Newton 08].
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2.4. Nonlinearity

Also a substantial amount of work has been done on photographing steady

state behaviour of the brass player’s lips, as discussed above, but a slightly

newer area of interest is the transient behaviour of the lips. The steady state

behaviour of the lips has to be initiated and this cannot be instantaneous; there

is a finite time when the various parts of the system begin to cooperate and then

eventually settle on a stable behaviour which is self sustaining. Many studies,

including [Berger 64, Saldanha 64, Luce 67], have verified that the beginning and

end of a note, the transients, are extremely important when trying to identify

characteristics of a note, such as timbre. When the transient section of a note is

removed, it can be difficult or often not possible to identify the instrument which

produced the note in question.

Transients are also very important to musicians in determining the quality

of an instrument; the ease for a player of starting a note on an instrument may

distinguish a good instrument from a bad one. When developing a note there

are two main areas of instrument design that should be taken into consideration

[Benade 69, Benade 76]. Firstly, in the same way that this factor is important in

sustaining a note, the fact that there has to be harmonically related resonances

affects the initial development of a note also. For an oscillation and coupled

regime to be sustained in the instrument the frequency must be close to a

resonance of the air column. Secondly, there is a finite time taken for the

initial disturbance to travel from the lips along the bore of the instrument and be

reflected at the bell and return to the lips. Within this finite time the lips start

oscillating without knowing anything about the instrument and its resonances

and before they are able to couple to the rest of the system.

2.4 Nonlinearity

The volume flow of air passing through the lip-valve has a nonlinear relationship

with the pressure difference across the valve . This volume flow is determined

by the pressure difference over the valve, the lip-reed, along with the open area

of the lips. The result of this nonlinear relationship is the cause of the pressure

waveform measured in the mouthpiece being non-sinusoidal [Backus 71, Elliot 82,

Fletcher 99a]. Even if the player’s lips were to open and close sinusoidally the

airflow through them is not usually sinusoidal itself, because of the nonlinearity
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2.4. Nonlinearity

of the valve. When playing at low and moderate levels, the harmonic content of

the sound is produced mainly due to the lip-reed’s nonlinearity.

2.4.1 Basic lip model

y x

z

spring

spring

lip

lip
u(t)

p m ip  (t)

m

m

h

Figure 2.4: Basic one mass lip reed model, where the lips behave as masses on
springs. Pm is the pressure inside the mouth, Pi is the pressure in the mouthpiece
and the height of the lip opening is denoted by h.

Figure 2.4 shows a diagram of the basic lip-reed model that was first proposed

by Elliot and Bowsher [Elliot 82]. Knowing that there is a nonlinear relationship

between the pressure difference across the lip-reed and the flow through this valve,

the volume flow rate U(t) of the air passing into the instrument can be described

using some nonlinear function F of the pressure difference:

U(t) = F (∆P ) (2.6)

where ∆P is the pressure difference across the reed, and is given by:

∆P = Pm − Pi(t) (2.7)

where Pm is the pressure in the mouth, and Pi(t) is the pressure in the mouthpiece.

The volume velocity (volume flow rate) is given by the product of the particle

velocity u(t) and the open area S(t):
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2.4. Nonlinearity

U(t) = S(t)u(t) (2.8)

Elliot and Bowsher [Elliot 82] assumed that the pressure inside the player’s

mouth was constant, that the flow through the lip channel could be described

by the Bernoulli equation, and that there was no downstream pressure recovery.

Therefore, using these assumptions the volume flow across the lips may be written

as:

U(t) = S(t)

√
2∆P

ρ
(2.9)

The result of combining equations 2.9 and 2.7 gives the following:

U(t) = S(t)

√
2(Pm − pi(t))

ρ
(2.10)

From this equation it is clear that the behaviour of the lip open area as a

function of time is directly related to the volume flow entering the instrument.

For this type of model the open area is modelled as a rectangular space as shown

in Figure 2.5.

y z

x
w

h

Figure 2.5: Lip open area of one mass model (shown in Figure 2.4). The width
of the channel is shown as w and the height of the open area as h.

It has been shown, in a number of works, that a basic one degree of

freedom lip model can be used to successfully produce realistic synthesised tones

[Adachi 96, Dietz 95, Msallam 00]. However, it was shown in [Yoshikawa 95]

that real player’s lips are able to produce a number of features that are not

possible in this one degree of freedom model; for example - players are able to

‘lip’ notes both up and down from the resonant mode frequency of the air column

[Cullen 00a, Cullen 00b, Neal 01, Campbell 04]. For this particular feature of

a real musician’s playing technique a two degree of freedom model is needed

[Richards 03].
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2.4.2 Lip opening area

As described above in Section 2.4.1 it is important, for computational modelling,

to understand the mechanics of the player’s lips, and specifically how the lip

opening area varies with time. The opening area can be considered as a function

of the opening height, h(t), of the lips. The simplest form of this function is to

assume that the relationship between the parameters is linear, resulting in

S(t) ∝ h(t) (2.11)

This linear relationship has been used in a number of models, such as

[Adachi 96, Elliot 82, Saneyoshi 87]. It is also possible to assume that the width

also varies with height, which gives the commonly used power law relationship

S(t) ∝ h(t)n (2.12)

with n ≥ 1. When n = 1, the width of the opening area remains constant

throughout the cycle, where the open area is a rectangle of constant width and

gives the relationship in Equation 2.11.

The case where n = 2 was used in [Msallam 00] and produced considerably

more accurate results than had been shown with the simpler linear relationship.

In this case the width of the lip opening increases directly as the height is

increased.

It has been shown in [Richards 03] that the realistic behaviour of the lip

opening area lies somewhere between the two cases described above, that is -

1 < n < 2. Bromage [Bromage 07] has since suggested that there may be two

separate values of n used at different points in the motion.

2.4.3 Harmonic Generation

It was shown by Martin [Martin 42] that on the cornet, the lip motion was almost

sinusoidal; however, studies of trombone lip motion, [Copley 95], showed a more

asymmetric area function when playing loudly. This area function alone is not

adequate to account for the high frequency components of the characteristic sound

of a brass instrument. Backus and Hundley [Backus 71] carried out a detailed

experimental and theoretical investigation into the physical mechanism in brass

instruments behind harmonic generation.

18



2.4. Nonlinearity

The results of this study showed that nonlinear effects did not significantly

contribute to harmonic generation, and that the input impedance did not

significantly change with different input pressures. It was concluded that the main

mechanism responsible for harmonic generation was the relationship between

the time-varying impedance of the lip opening and the input impedance of the

instrument. The lip opening behaviour of the pressure valve is intrinsically

nonlinear, but the flow through this valve is also determined by a combination of

the input impedance of the instrument and the time varying impedance created by

the lips. When the open area of the lips is small, the lip impedance is much greater

than that of the input impedance of the instrument. When the lip opening is at

its maximum, the open area is much greater than the cross sectional area of the

narrowest part of the instrument’s bore (the mouthpiece throat), and therefore

the lip impedance is far smaller than the input impedance of the instrument.

This means that the volume flow into the instrument, for parts of the cycle,

is controlled by the lips; for the other parts of the cycle the volume flow is

controlled by the instrument. Backus and Hundley used these results to simulate

the pressure then created within the mouthpiece. Although the basis of these

results still hold, it has been shown in [Elliot 82, Hirschberg 96] that Backus and

Hundley underestimated the effect of the nonlinear behaviour on the system.

2.4.4 Co-operative regimes of oscillation

In brass wind instrument playing the player is able to modify the embouchure

(the shaping of the lips) within the mouthpiece. The player sets the embouchure

such that the lips start vibrating at a particular desired frequency and so that the

flow into the instrument is modulated appropriately. To obtain a self-sustaining

oscillation regime the frequency at which the lips are vibrating must be close to

a resonance of the air column.

If the air flow through the lips was purely linear it would be sufficient to have

a set of resonances for the notes the player wished to play. The vibration of

the lips and therefore the pressure fluctuations would generate a standing wave

at this resonance. The air column within the instrument can be described as a

linear acoustic oscillator, but the valve controlling the flow complicates the system

with its nonlinear nature. Because of this it is not sufficient to only consider the

fundamental frequency of oscillation as the resonator is coupled to the flow valve
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which is nonlinear. It is known [Benade 76] that if the air column has no other

resonances harmonically related to the fundamental frequency then energy is lost

and the note is hard to sustain, it is because of this that it is desirable to have

harmonically related resonances within an instrument.

2.5 The Brassy Sound

Brass instruments have a very distinctive sound quality when played at high

dynamic levels: a ‘brassy’ or ‘cuivré’ sound, which is utilised by musicians

and composers as musical expression. In a brass instrument the harmonic

content of a sound played at quiet or moderate playing levels can be explained

by the primary nonlinearity of the lip-reed which is the origin of the non-

sinusoidal waveforms of the pressure and flow measured in the mouthpiece

[Backus 71, Elliot 82, Fletcher 99a]. However, when a brass instrument is played

at the loudest dynamic levels there is a distinct change in timbre to a ‘brassy’

sound. This ‘brassy’ sound is characterised by the significant increase in the

strength and number of upper harmonics. The nonlinear propagation of the

waveform along the bore of the instrument produces an energy transfer from

the low harmonics to the high harmonics [Fletcher 99a] and it is generally

accepted that this is the origin of the ‘brassy’ sound [Campbell 99]. The effect

of nonlinear propagation in increasing the amplitude of higher harmonics is more

dominant in some instruments than others; for example, the trombone is generally

considered to be more ‘brassy’ than the tuba. There have been attempts to

assign a ‘brassiness coefficient’ to instruments as a method of musical taxonomy

[Gilbert 07]. There are several effects that have been suggested as being possible

contributions to the production of the ‘brassy’ sound, as are discussed in the

following sections.

2.5.1 Lip motion

One factor that some researchers [Fletcher 99b, Widholm 05, Moore 05] have

suggested could contribute to the brassy sound is that as you increase the playing

dynamic the player’s lip opening area can become ‘saturated’ at extremely loud

dynamics. This saturation comes from the lips being constrained by the rim of

the mouthpiece and the cup walls. If saturation of the lips were present under
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these loud playing conditions this would contribute significantly to the change

in timbre of the sound produced by the instrument. As discussed in Section

2.4.3 measurements were carried out by [Martin 42] which showed that the lip

opening area was almost sinusoidal with respect to time for mezzo forte playing on

the cornet. There have been other studies, however, that have used trombones

and shown that the lip opening area does not vary sinusoidally. Copley and

Strong [Copley 95] and Bromage et al., [Bromage 06] have both shown that the

lip motion is split into two phases; the opening and closing phases of one cycle,

then the closing phase takes longer than the opening phase. It was shown that

at loud playing levels this effect was more apparent.

2.5.2 Wall vibrations

It is well known that as a sound is produced on a brass instrument the walls

vibrate [Knauss 41] and as the dynamic level of the sound increases so does

the amplitude of the wall vibrations. There have been many works debating

whether these wall vibrations contribute considerably to the sound produced by

the instrument [Kausel 08, Whitehouse 08, Nief 08, Moore 07, Pyle 98].

It was found by Smith, in 1978, that in trumpets the wall thickness was

the dominant factor affecting the timbre of the instrument, rather than the wall

material [Smith 78]. Smith published further work showing holograph images

of bell eigenmodes and that the vibration amplitude is inversely proportional to

the fourth power of the wall thickness [Smith 87]. It was found by Moore et al.

[Moore 05] that the effect of bell vibrations varies between instruments; work

on trombones showed that the bell vibrations have little effect on the radiated

sound [Smith 86], and conversely, work on trumpets and horns showed that the

bell vibrations do effect the radiated sound [Lawson 85].

More recently, more work on horns showed that wall vibrations do indeed

matter and that it is quite difficult to attribute this to one single mechanism

[Kausel 08]. The same authors have since proved that there is no longer any

doubt that the vibrations of the bells of brass wind instruments affect the

sound produced during play [Kausel 10]. This work used both experimental and

theoretical approaches, with results indicating that audible effects of the radiated

sound can be attributed to the presence of strain oscillations in the bell and the

interaction of these with the air column within the instrument.
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2.5.3 Waveform distortion

In 1971 Backus and Hundley [Backus 71] were the first to seriously attempt to

identify the physical mechanism by which the harmonics of a brass instrument

were created. This work concludes that the nonlinear behaviour of the air column

within the instrument is not a major factor in the production of harmonics,

accounting for only a minor percentage of the total harmonic distortion. This

work was challenged by Beauchamp [Beauchamp 80] which suggested that the

air column within the instrument became more important when an instrument

is played loudly and there is nonlinear propagation down the instrument,

this was further confirmed by Elliot and Bowsher [Elliot 82]. Hirschberg et

al. [Hirschberg 96] verified that shockwaves were formed within the bore of

instruments; these shockwaves were responsible for the nonlinear effects in the

instrument. These nonlinear effects have been verified since, both theoretically

[Thompson 01, Msallam 00] and experimentally [Pandya 03].

We first consider a large amplitude plane wave in a lossless fluid, propagating

within a cylindrical tube [Blackstock 97, Hamilton 98]. Figure 2.6 shows the

initial waveform in the solid curve, a sinusoidal waveform. The propagation

speed of this wave, dx/dt, at a point x relative to a fixed observer is given by:

dx

dt
= c+ u (2.13)

where c is the speed of sound, and u is the particle velocity.
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Figure 2.6: Sound wave propagation from left to right. Solid line showing one
cycle of initial sine wave, dashed line showing how the wave distorts. Arrows
indicating the particle velocity direction.

As the wave is propagating, the local air temperature is affected because of

the sound pressure. c is increased as the air is compressed and decreased as the
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air is rarefied. This gives:

c = c0 +
γ − 1

2
u (2.14)

where γ is the ratio of specific heat at constant pressure to specific heat at constant

volume, and c0 is the small signal speed of sound. Therefore, combining Equations

2.13 and 2.14 gives:

dx

dt
= c0 +

γ + 1

2
u. (2.15)

This equation shows that the propagation speed varies at different points on

the waveform. The overall speed of the propagating wave is c0, but the points

where u, the particle velocity, is positive move faster than c0, and the points

where u is negative move slower than c0. Figure 2.6 shows how this effect causes

the waveform to steepen, shown as the dashed curve. As this effect becomes more

and more pronounced the rate of change of the waveform, du/dt tends towards

infinity and hence a shock wave is formed.

2.5.4 Distance to shockwave formation

The distance Xs needed for a shock wave to be generated in a cylindrical tube,

using a lossless approximation, is shown in [Hirschberg 96] to be:

Xs ≈
2γPatmc

(γ + 1)(δp(in)/δt)max

(2.16)

where p(in) denotes the input pressure, Patm atmospheric pressure, c the speed of

sound in air and γ the ratio of specific heats for air. It is clear from Equation 2.16

that Xs is not dependent on the internal diameter of the tube D ; this implies that

tubes/instruments with the same length and different internal bore diameters

should have the same rate of nonlinear distortion for the same input pressure

waveform.

2.5.5 Brassiness potential

We now consider a flaring horn, or a brass instrument, with length L and diameter

D(x), where 0 ≤ x ≤ L. The input/mouthpiece end is defined as x = 0 and the

output/bell end is defined as x = L.
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As the sound wave propagates down the horn, the cross-sectional area

increases, and hence, the sound energy is spread over a larger area and the

particle velocity decreases. If we neglect viscothermal wall losses inside the horn

and assume that the sound energy is constant throughout, conservation of energy

dictates the following relationship:

u(x)

u0

=
D0

D(x)
(2.17)

where D(x) is the bore diameter and u(x) is the particle velocity at position x.

D0 and u0 are D(x) and u(x) at a reference point.

The speed of sound is changed for the various parts of the waveform as it

propagates within the horn. Combining Equation 2.17 and Equation 2.15, for a

plane wave propagating within a tube, gives

dx

dt
= c0 +

(
γ + 1

2

)
D0u0

D(x)
. (2.18)

In an outward flaring horn the sound wave has to travel further than it would

in a cylindrical tube if the same amount of nonlinear distortion is to be seen;

this leads to an effective ‘stretch’ in the x coordinate for the same input particle

velocity.

It is possible to find the length of a cylindrical tube that will have the same

nonlinear distortion as an instrument with a much more complicated flaring

bore; this can be done by integrating Equation 2.18 over the entire length of the

instrument. The length of the cylinder will be less than that of the instrument as

almost all brass instruments flare outwards. The brassiness potential parameter

B is defined as the ratio of the length of the cylinder and Lecl, the equivalent

conical length of the instrument [Gilbert 07, Myers 07]:

B =
1

Lecl

∫
D0

D(x)
dx (2.19)

where D(x) is the bore profile of the instrument, and the equivalent conical length

is the length of a cone where Lecl = c/2f1, f1 being the nominal fundamental

frequency of the instrument. Therefore, the equivalent conical length, Lecl, is the

same for instruments that are pitched in the same key, but the physical length,

L, of these instruments will vary depending on the bore profile.

B is a dimensionless parameter that lies between zero and one for brass
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instruments, where B = 1 denotes a cylindrical tube. Therefore, instruments

with a higher proportion of cylindrical tubing, such as the trombone and trumpet,

have a higher value of B than instruments with more expanding tubing, such as

euphoniums and flugelhorns. Instruments with a higher value of B will show

more nonlinear distortion, and hence sound more ‘brassy’, than instruments with

a lower value of B if the instruments are excited by the same input signal.

2.5.6 Linear regime transfer function

Musicians generally agree that a brassy timbre will be developed at a lower

dynamic level in narrow bored instruments than in an instrument with a wider

bore, but similar bore profile. This can be justified if we take into account the

radiated pressure at the bell end of the instrument. The player will be using this

radiated pressure wave to determine the overall dynamic level they are playing

and will not have an indication of the level of the pressure waveforms inside

the instrument. Assuming linear acoustics, for a given sine wave input pressure,

p(in), there will be a radiated sine wave pressure that corresponds to p(out) = T

p(in), where T is the transfer function between the input of the instrument and

the point in the radiation field where measurements are taken. The radiation can

be approximately treated as a monopole source centred on axis, at the bell exit,

when the frequency is significantly low enough that the wavelength will be much

greater than the diameter of the bell, resulting in radiation given by [Myers 12]:

p(out) ≈ jρ0ωQ

4πd
exp(j(ωt− kd)) ≈ ρ0ωSu(bell)

4πd
exp(j(π/2− kd)) (2.20)

where Q is the monopole source strength, d is the distance from the monopole

source to the point of measurement, S is the bell opening area, and u(bell) the

acoustic particle velocity at the bell exit plane. Being able to calculate the output

pressure, p(out), allows the transfer function to be calculated using the following:

T =
p(out)

p(in)
=
ρ0ωS

4πd
exp(j(π/2− kd))

u(bell)

p(in)
(2.21)

If we neglect viscothermal wall losses within the tube, the ratio u(bell)/p(in)

will not be affected by a uniform scaling of the bore by a factor σ. Knowing that

T is proportional to the cross sectional area of the bell, S, this means that it will
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increase by a factor of σ2. The minimum diameter of the bore, D0 will increase

by a factor of σ, and therefore the lossless approximation predicts that T ∝ D2
0.

The inclusion of wall losses acts to reduce u(bell)/p(in), and the amount of

reduction increases as the internal diameter is reduced. This therefore, further

increases the dependance of T on D0. In the case of a cylindrical tube of length

L and the input at x = 0 the effect of losses on the transfer function can be

incorporated by introducing the complex wave vector k′ = ω/ν - jα, where ν is

the internal propagation velocity. The viscothermal attenuation coefficient α is

given by

α ≈ 3× 10−5f 1/2

r
(2.22)

where r is the internal tube radius, f is the frequency in Hertz, and α is

given in (metres)−1 if r is in metres [Fletcher 98]. This relationship shows that

viscothermal losses are also frequency dependent, increasing with frequency.

The sound field inside the tube/instrument can be treated as the sum

of the forward and backward propagating waves, which can be expressed as

p+=Aexp(j(ωt - k′x) and p−=Bexp(j(ωt + k′x) respectively. Therefore, the input

pressure and particle velocity can be expressed as

p(in) = (A+B) exp(jωt), (2.23)

u(out) = (ρ0c)
−1[A exp(−jk′L)−B exp((jk′L)]exp(jωt) (2.24)

Equation 2.21 can then be expressed in the form

T =
kS exp(j(π/2− kd))

2πd[(ZL/Z0 + 1) exp(jk′L) + (ZL/Z0 − 1) exp(−jk′L)]
(2.25)

where ZL is the radiation impedance and Z0 is the characteristic impedance of

the tube, Z0 = ρ0c/S.

2.5.7 Nonlinear regime transfer function

When examining the case of the linear transfer function and its dependence

on bore diameter this implies that the player is required to generate a higher
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2.5. The Brassy Sound

amplitude input pressure, p(in), in a narrow bored instrument than in a wide

bore instrument to produce the same radiated sound intensity. It can then be

seen from Equation 2.16 that the narrow bore instrument will have a higher rate

of nonlinear distortion.

This linear regime argument is not wholly sufficient to quantify this effect

as when the output waveform is significantly distorted then the linear regime

transfer function is no longer applicable. A sinusoidal input will result in an

output wave whose spectral enrichment will increase with the amount of nonlinear

distortion, up until the point where a shock wave is formed. It is also known that

the higher frequency components are more efficiently radiated because of the

frequency dependance of the radiation impedance, therefore the total radiated

sound power for a given input pressure will increase with the amount of nonlinear

distortion. While this boost of amplitude in the upper harmonics is acting to

increase the radiated sound power, there is some degree of counteraction to this

by the increased wall losses with increasing frequency.

In the nonlinear distortion case the simplified effective transfer function can

be used to take into account these subtleties and can be defined as:

Teff = p(out)rms/p(in)rms (2.26)

Wave steepening, due to nonlinear distortion, and shock wave formation are

widely accepted as the dominant factors behind the brassy sound produced by

brass instruments. However, there are other mechanisms which are believed

could be responsible for the creation of the brassy sound, or which reinforce

that produced by the nonlinear distortion.
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Chapter 3

Analysis of the mechanics of

slurred transients

This chapter will explore the motion of the player’s lips during transients, in

particular slurred transients between different resonant modes of the instrument.

Two different experimental techniques were used; high speed filming of the lips

during playing and the use of a forced oscillation input to the instrument. In

Chapter 4 these results will be compared with a time domain computational

model.

3.1 Introduction

It is widely acknowledged that the starting transient of a note is of paramount

importance for the listener in determining which instrument is being sounded, and

giving an instrument its characteristic sound [Grey 77, Berger 64, Saldanha 64].

The mechanics of such transients have been explored in a number of more recent

works [Bromage 07, Stevenson 09a], using optical techniques with both human

players and an artificial mouth. Leading on from this work on starting transients,

the natural progression is to explore the mechanics of transitions between different

notes once a note has been started and sustained.

In music, a ‘slur’ indicates a smooth transition between two notes; on a brass

instrument, if these two notes are both resonant modes of the instrument, the

player achieves this slur by a combination of changing the tension in the lips,

mouthpiece pressure, and air flow rate. This is often referred to as a lip-slur.
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3.1. Introduction

Previous exploration in this area includes impedance measurements for slurred

transients in valved instruments [Widholm 97, Widholm 05].

When sounding a note on a brass instrument the player’s lips open and close

periodically. The initial frequency with which the lips vibrate is determined by the

player’s choice of embouchure, which influences the mechanical properties of the

lips. When a player sounds a note on a brass instrument there is a strong coupling

between the vibration of the lips and the resonant modes of the instrument air

column. During a lip-slur the player is attempting to change the lip vibration

from one strongly coupled steady state vibration to another. It is expected that

as the player changes the frequency of the lips in order to reach the target second

note there will be a finite time during which the oscillations of the lips and air-

column will no longer be coupled.

The time taken for the lip oscillation and the air column resonance to couple

is determined by the period of the acoustic wave within the instrument and the

frequency at which the lips are vibrating. Say, for example, that the lips are

vibrating at the frequency of a high number mode of the air column e.g. the 6th

mode - the player is aiming to play at the 6th mode frequency of the instrument.

The period of the acoustic wave for a fixed length of tube is constant with respect

to frequency, so in the time it takes for the wave to propagate to the end of the

instrument and back, the lips will have completed 6 cycles; therefore for the 6th

mode it will take approximately 6 cycles of the lips before the system is coupled

to establish a stable regime of oscillation.

When assessing the qualities of a note sounded on a musical instrument the

transient, either in starting a note or between slurred notes, is one of the most

important features. This is true not only for the listener but also for the player.

For a brass player evaluating a new instrument, he or she will be concerned with

issues such as intonation and timbre, the responsiveness of the instrument to

start a note, and also the ease with which the player can move between notes,

including slurred intervals. A fuller understanding of the mechanics behind this

complex coupled system, during a transition, is of great importance in the wider

explanation of what makes one particular instrument easier, and more enjoyable,

to play than any other instrument.
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3.2. Visualisation of the lips - Experimental technique

3.2 Visualisation of the lips - Experimental

technique

With the use of a high speed digital camera it was possible to capture the lip

motion of a player during playing. This optical data was synchronised with

different measured pressure signals to enable analysis of the lip motion during

note transitions.

3.2.1 Instruments

A number of different brass instruments have been used in this study of

slurred transients. The high speed photography experiments used three different

orchestral horns - an early 20th century narrow bore horn by Boosey and Hawkes,

a modern wide bore Conn 8D, F/Bb double horn, c.2000, and a Meinl &

Lauber/Paxman ‘baroque’ horn modelled after an 18th century instrument by

Huschauer, Vienna c.1770.

All players used in this study were skilled players with many years of playing

experience. Each of the transitions shown here were performed well and decided

by the players and listeners in the room to be musically satisfactory.

3.2.2 Experimental setup

A Vision Research Inc. [Vision Research Inc 13] Phantom v4.1 digital high speed

camera was used to capture the motion of the lips. The camera resolution was

normally set to 256 × 128 pixels, and a recording rate of 5000 frames per second.

The exposure time and aperture setting of the camera were varied to give the

maximum depth of focus while maintaining the quality of the images produced.

The filming of the lips required a strong light source to produce video footage

appropriate for computational analysis. A Schott KL1500 LCD swan-neck fibre

optic cold light source was used to create the desired illumination; this type of

light source was necessary because of its use in close proximity to the player’s

face.

The mouthpiece pressure was measured using a 106B PCB Piezotronics

dynamic pressure transducer with a probe attachment that was inserted into a

small hole drilled in the rim of the mouthpiece. The radiated sound was measured

30



3.2. Visualisation of the lips - Experimental technique

using a Bruël and Kjær 4192 pressure-field microphone which was placed one

bell radius from the bell of the instrument. The microphone pressure signals

were fed into a Bruël and Kjær PULSE system [Bruël and Kjær 13] for data

acquisition and synchronisation with the high speed video data. The instruments

were mounted using retort stands. The horn mounting is shown in Figure 3.1;

the horn is mounted upside down to allow the best optical access possible.

Figure 3.1: Boosey and Hawkes early 20th century narrow bore horn as mounted
for experiment.

Although this orientation of the horn is not at all a normal position for playing

the players were able to play the horn suitably well and comfortably. With the

horn in this position it was still possible for the players to have the right hand

positioned in the bell as they would for playing in a conventual position. The full

experimental setup is shown in Figure 3.2.

3.2.3 Transparent mouthpiece

Specially designed transparent mouthpieces were used to allow optical access

to the player’s lips, based on an original design by Ayers [Ayers 98]. These
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3.2. Visualisation of the lips - Experimental technique

Figure 3.2: Experimental setup for high speed filming of the player’s lips, with
simultaneous recording of the pressure inside the mouthpiece and the radiated
sound.

transparent mouthpieces have been developed and used at the University of

Edinburgh in various works on brass instruments [Richards 03, Bromage 07,

Newton 09, Stevenson 09a]. The cups of the mouthpieces are machined from

perspex with an optical glass window that is approximately parallel to the face

of the player. The mouthpieces can have this optical window in this position as

the shank extends sideways from the cup instead of forwards. Figure 3.3 shows

a schematic diagram of the transparent horn mouthpiece, and Figure 3.4 shows

a photograph of the same.

In the case of the horn mouthpiece the optical window is angled slightly, and

not perpendicular to the rim. This design feature was used as it has been found

with horn measurements that the top lip can ‘overhang’ the lower lip slightly.

The angled optical window allows the lips to be filmed from slightly below

the straight-on position. The dimensions of the rim, cup, volume, and shank

(including the throat and backbore) are based on commercially available models

of mouthpiece. The horn mouthpiece properties were taken from a Paxman 4C.
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16mm

20
o

18mm

28mm

Figure 3.3: Schematic of horn transparent mouthpiece with angled optical
window.

Figure 3.4: Photo of horn transparent mouthpiece with angled optical window.
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3.2. Visualisation of the lips - Experimental technique

While the dimensions of the commercial mouthpieces can be replicated, it is clear

that the shape of the cup is very different from the commercial models. It has

been assumed that the cup volume and not shape is the most important design

feature [Plitnik 99].

3.2.4 Data analysis

The (greyscale) video footage obtained from the high speed camera was edited

such that one bitmap (*.bmp) image was produced for each frame of the video;

this was done using VideoMach software package [Gromada 13]. The images

were cropped as to only show the relevant parts of the lips. These sets of images

were then analysed in MATLAB [Mathworks 13] using a technique developed by

Richards [Richards 03] and Bromage [Bromage 07] and also used by Stevenson

[Stevenson 09a].

The individual frames are loaded into MATLAB, and the first image is used

to set the greyscale threshold level. Because the high speed camera produces

greyscale footage the user is able to set a threshold level, in which each pixel that

has a greyscale level above the threshold is set to white, and all that are below

the threshold are set to black. The open area of the lips will correspond to the

black pixels if the correct threshold is set and the inner edge of the lips is then

well defined. Figure 3.5 shows one cropped frame from the video footage on the

left and the final ‘binarised’ image on the right. The number of black pixels are

then counted, again using a MATLAB program, for each image and the opening

area plotted as a function of time.

Figure 3.5: An image of the lip open area from the video footage (Left) and the
corresponding ‘binarised’ image (Right). The opening area appears black.

The instantaneous frequency of the pressure signals and the lip open area

were calculated using YIN, a fundamental frequency estimator program which

is detailed in [Cheveigne 02]. This analysis program uses the well-known

autocorrelation method that may be used on signals with a degree of aperiodicity.

There are a small number of parameters that require to be tuned including
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3.3. Visualisation of the lips - Results

upper and lower fundamental frequency, F0, search bounds, window size, and

the absolute threshold. The absolute threshold determines the proportion of

aperiodic power tolerated within a periodic signal. When choosing the upper

and lower limits of F0, they were bounded as closely as possible to the expected

fundamental frequencies of the notes in the transitions as determined from the

input impedance of the instrument. The window size and threshold must be

chosen carefully as the signals being analysed in this work have quickly varying

fundamental frequencies, within one period the frequency can change. It is worth

noting that when the frequency changes in a time shorter than one period, it can

be difficult to accurately define the fundamental frequency. The rate of change

of the phase is a more accurate definition of the a quickly varying signal in terms

of frequency. If the window size is too large the frequency estimation will be

overly smoothed, whereas if the window size is too small there is a risk of a full

period not being encapsulated in the window. It is fair, in this work, to have a

threshold value slightly higher than would be used for a steady state signal as

the signals considered here can become very complex and aperiodic during the

transitions. Even after the tuning of these parameters there can be points in the

frequency analysis that are not 100% reliable; these points occur where there are

unexpected aperiodic inconsistencies in the signal.

3.3 Visualisation of the lips - Results

3.3.1 Different approaches to slurring

The study of starting transients on brass instruments has shown that the time

for a transient is typically around 50ms; this was first reported by Luce and

Clark [Luce 67]. A slurred transient consists of a finishing transient followed by a

starting transient as the player’s lips are decoupling from one cooperative regime,

and then become coupled to the new cooperative regime that is set up.

Different players have different approaches to producing a smooth sounding

slur. For example, the well known horn teacher Philip Farkas advocates a

technique in which the player practises a glissando, ‘catching’ the intermediate

resonances en route from the first note to the second as shown in Figure 3.6.

The speed of the glissando is increased until a smooth musical slur is achieved

[Farkas 56]. An alternative approach is to effectively stop the first note and
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3.3. Visualisation of the lips - Results

discreetly start the second note as quickly as possible, producing the aural illusion

of one note moving smoothly to the next.

Figure 3.6: Philip Farkas’ pedagogic exercise for the production of “full sounding,
velvety slurs” [Farkas 56].

The approach with which each of the players used in this study takes to playing

lip-slurs is different. Player A practises slowly playing each of the resonant modes

of the instrument between the two slurred notes, and then builds up the speed

to hopefully create a portamento type transition, as taught by Philip Farkas and

described above. Player B, however, takes the opposite approach to lip-slurring,

in aiming to make the transition as fast as possible and latch immediately onto

the second note of the slur. When asked about their approach to carrying out this

type of slur, Player B stated that there was no conscious intent to stop the first

note in order to restart on the second note, and that the sensation was actually

one of continuously sounding (or blowing through) the instrument during the

transition.

3.3.2 Typical characteristics of slurred transitions

All results presented in this section were performed on the Conn 8D, which is the

modern wide bore horn.

Figure 3.7 shows the synchronised opening area data and pressure signals for

an octave lip-slur by Player A. This particular slur was an octave interval between

the 4th and the 8th resonant modes of the horn in open D, which corresponds to

the notes D3 and D4.

It can be seen in the middle plot of Figure 3.7 that the open area of the

lips, shown in red, decreases relatively steadily in amplitude until around 0.1s.

There are then around 15 cycles of the lip motion where the amplitude is

significantly smaller until around 0.18s; at this point the amplitude starts to

build up steadily to the second steady state motion of the new resonant mode.

The instantaneous frequency of the open area, shown in blue, begins to increase at
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Figure 3.7: Synchronised signals for lip-slur from D3 to D4 by Player A, on
modern wide bore horn by Conn. Top: Mouthpiece pressure Middle: Lip open
area Bottom: Radiated pressure.

around 0.08s, showing that the amplitude of the opening area begins to decrease

before the lip frequency begins to increase. It can be seen that the time between

steady frequencies i.e. between the two slurred notes, is around 100ms. There

are a number of peaks/shoulders within the instantaneous frequency transition

period; these peaks are rather erratic and do not correspond to the intermediate

resonances.

During this lip-slur transition period the pressure in the mouthpiece, shown

in the top plot of Figure 3.7, also has rather erratic behaviour in both amplitude

and frequency. The amplitude decreases from the steady state behaviour at

around 0.05s, as with the lip opening area, and then begins to build up to

the second steady state at around 0.16s. The instantaneous frequency shows

similar characteristics to that of the lip opening area also, with a number of

peaks during the transition. There are also two significant dips in the frequency

at approximately 0.08s and 0.11s; these can be explained as a result of the

fundamental frequency analysis failing to predict the instantaneous frequency
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3.3. Visualisation of the lips - Results

correctly at these points. It can be seen in the pressure signal that there are small

secondary peaks around both these dips that the frequency analysis program is

not taking into account appropriately.

The external pressure signal and instantaneous frequency are shown in the

bottom plot of Figure 3.7. In this case the amplitude of the pressure signal

begins to decrease at around 0.07s and begins to build up to the steady state at

around 0.17s; we would expect the external pressure signal to have a small delay

in beginning to decouple from the cooperative regime, as the pressure signal has

to travel the length of the instrument before any change will be recorded at the

external microphone. There is no break in the radiated sound as the amplitude

remains significant throughout the transition, albeit rather unpredictable in

amplitude. The instantaneous frequency shows similar results to those of the

mouthpiece pressure and lip opening area. In this work the transition time is

defined as the time between steady state frequencies of the radiated pressure;

therefore in the case of this slur the transition time is around 100ms. These values

were determined by inspection of the radiated pressure instantaneous frequency

plots.

The synchronised signals for the same octave slur, between the notes D3 and

D4, on the same horn, by Player B are shown in Figure 3.8. This figure shows

some of the same characteristics as that of Player A, but the transition time is

shorter at approximately 70ms. The external pressure signal also differs from

that of Player A significantly; during the transition, between 0.14s and 0.17s,

the amplitude of the pressure signal is extremely small indicating that there was

more of a break in the radiated sound between the two slurred notes. This break

in the sound was not audible and did not make this slur sound less musically

satisfactory than the corresponding slur by Player A.

The number of small amplitude peaks in the open area plot is also significantly

less than seen in the results from Player A. There is a steady decrease in amplitude

of the lip open area from 0.08s, but there are only 5-6 peaks which are significantly

smaller in amplitude. The instantaneous frequency of the lip opening area only

begins to increase around 0.14s; this is when the amplitude is almost at its lowest

point, showing that the player has tapered down the opening of the lips before

changing the frequency at which they are oscillating. The frequency is shown to

increase dramatically within one cycle of the lip motion, thereafter the frequency
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Figure 3.8: Synchronised signals for lip-slur from D3 to D4 by Player B, on
modern wide bore horn by Conn. Top: Mouthpiece pressure Middle: Lip open
area Bottom: Radiated pressure.

increases steadily until is has reached the frequency of the upper note. The

instantaneous frequencies for both the radiated and mouthpiece pressure signals

show similar characteristics.

The mouthpiece pressure signal for Player B is much less erratic than that

of Player A during the transition between the two notes, although between 0.12s

and 0.15s the amplitude of the signal is relatively small. Although the pressure

amplitude is small between these times it is still greater than that of the radiated

pressure during the transition.

Measurements were also carried out on a perfect fourth transition, between

the 3rd and 4th resonant modes of the open F horn, which corresponds to the

notes C3 and F3. The results for Player A performing this slur on the same wide

bore horn by Conn are shown in Figure 3.9.

It can be seen here that the amplitude of the lip opening area decreases very

uniformly from the steady state, as is the case in the octave slur, until around

0.1s where there is a small peak before the amplitude fluctuates in an unsteady

39



3.3. Visualisation of the lips - Results

−2

−1

0
P

re
ss

ur
e 

(k
P

a)

 

 

100

150

200

250

F
re

qu
en

cy
 (

H
z)

MP Pressure
Frequency

0.05 0.1 0.15 0.2 0.25

−0.1

0

0.1

P
re

ss
ur

e 
(k

P
a)

Time (s)

 

 

100

150

200

250

F
re

qu
en

cy
 (

H
z)

Ext Pressure
Frequency

0

10

20

O
pe

n 
ar

ea
 (

m
m

2 )

 

 

100

150

200

250

F
re

qu
en

cy
 (

H
z)

Open area
Frequency

Student Version of MATLAB

Figure 3.9: Synchronised signals for lip-slur from C3 to F3 by Player A, on modern
wide bore horn by Conn. Top: Mouthpiece pressure Middle: Lip open area
Bottom: Radiated pressure.

manner until 0.15s; it is at this point that the lip opening area increases steadily

to the new steady state regime. The frequency of the lip opening area appears to

overshoot the frequency of the second note, then fluctuates around the frequency

of the new note before settling at this frequency at around 0.15s.

The mouthpiece pressure signal shows similar behaviour to that of the lip

opening area in that there is a steady decrease in amplitude, a short section of

unsettled oscillation of pressure around 0.1s, and the amplitude then increases

slightly to the steady state situation. Both the lip opening area and mouthpiece

pressure signals show similar behaviour as the corresponding signals shown in

Figure 3.7, for the octave slur on the same instrument with the same player. The

octave slur results show more cycles over the transition period as the frequency of

these notes are higher than those played in the perfect fourth transition; this apart

the results for each of the different interval slurs show similar characteristics. This

is also broadly true for the radiated pressure signals but in the perfect fourth slur

it can be seen that the pressure amplitude drops at around 0.1s. The frequency of
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both the mouthpiece and radiated pressure signals are similar to the lip opening

area, with a fluctuation around the second note frequency. The instantaneous

frequency of the mouthpiece signal shows a dip at around 0.09s which can be

attributed again to the analysis program faltering over the secondary peak that

can be seen in the pressure signal.

Figure 3.10 shows the results for Player B performing the perfect fourth

transition, again on the wide bore horn by Conn. Comparing the results shown

here with those in Figure 3.8 of the Player B playing an octave slur on the

same instrument it can be seen that the amplitude results have very similar

characteristics. The lip open area and the mouthpiece pressure signal show the

same smooth decrease and then increase in amplitude throughout the slur as

was seen in the octave slur. The radiated pressure signal is also similar for both

intervals, with a pressure of almost zero for the majority of the transition time.

The instantaneous frequency for all three signals here also show a similar quick

increase, over the time of a cycle or two, and then the frequency takes a short

time to come to the steady state of the second note. As with Player A, it seems

that the frequency overshoots the top note slightly before settling at the correct

frequency.

All of these results show that in this register the interval in which the player

slurs over does not affect the typical characteristics of the slur. It can be seen for

all slurs performed by Player B that the radiated pressure effectively disappears

for some time during each transition between notes, but the lips are still oscillating

and there is still a small oscillating pressure in the mouthpiece. This could

be attributed to the fact that the pressure seen in the mouthpiece is small in

amplitude, and as this pressure wave propagates down the instrument it will be

subject to viscothermal losses, leaving little pressure amplitude to be radiated

at the bell end of the instrument. If we examine the case of Player B playing

an octave slur on the modern wide bore Conn horn, as shown in Figure 3.8,

it can be seen that the amplitude of the mouthpiece pressure never drops below

0.5kPa, meaning that there is always a significant pressure in the mouthpiece. The

frequency of the lip opening area starts to change at around 0.14s, but the player

has already began tapering the note down, in terms of reducing the amplitude

of the lip opening area while keeping the lips oscillating at the frequency of the

first note until around 0.14s. We can assume that as the lip opening amplitude
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Figure 3.10: Synchronised signals for lip-slur from C3 to F3 by Player B, on
modern wide bore horn by Conn. Top: Mouthpiece pressure Middle: Lip open
area Bottom: Radiated pressure.

is becoming increasingly small, the backward going wave is predominant within

the instrument and this is what is providing the lips with reinforcement to keep

oscillating at the frequency of this first note. The frequency at which the lips are

oscillating then suddenly changes; within one cycle the frequency has changed

dramatically. There are then a small number of cycles where the lip frequency

is a little unstable before settling at the new frequency. We can assume that if

the behaviour of the lips changes almost instantaneously, the time where there is

no radiated pressure is the time it takes for the sound to propagate to the end of

the instrument. In the case of this instrument, a 4.42m D horn, the time for the

wave to propagate to the end of the instrument is around 10ms. It can be seen in

Figure 3.8 that the radiated pressure begins again to show a significant amplitude

at around 0.17s, which is almost 20ms after the lip opening frequency suddenly

changed from the first note. So for this particular slur we see that around 20ms

after the lips instantaneously change the radiated sound amplitude dramatically

increases from almost zero to around 0.1kPa amplitude; this will be around the
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same time that the first pressure wave at the new frequency will be returning to

the lips.

Although the lip frequency appears to change within one cycle, it will take the

time of several cycles for the new frequency pressure wave to propagate to the end

of the tube, and in the same way it will take twice as long for the returning wave to

reach the lips and establish a new cooperative regime. This could explain the time

of unsettled lip frequency between 0.17-0.20s as the time where the new frequency

wave is propagating down the instrument and back, before the new steady state

regime is completely formed. There is therefore a time where the backward

going pressure wave, within the instrument, is at the frequency of the first note,

but the lips are oscillating at the frequency of the second note, and therefore

creating a forward going pressure wave at this new frequency. The reduction in

the amplitude of the lip opening area could act to lessen the complication of two

different frequency waves propagating simultaneously, as the reduction in open

area results in a reduction in the amplitude of the wave propagating from the

lips.

It was found that there were no notable differences in measurements taken

on the second horn, the narrow bore Boosey and Hawkes instrument. The main

characteristics that were shown in the results, for both players, were consistent

across both types of horn. The results for both players on the narrow bore horn

can be seen in Appendix A.

The transition time is defined here as the time between the steady state

frequencies of the radiated sound pressure. It was found that the transition

times for the octave slurs, for both players, were generally longer than the perfect

fourth slurs, as shown in Table 3.1. The transition times shown here have not

been found to be strictly double the time of a starting transient, which was found

to typically be around 50ms [Luce 67], but between 70ms and 100ms.
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Instrument Interval Player Transition Time

Conn octave A 100 ms

Conn octave B 70 ms

Boosey and Hawkes octave A 90 ms

Boosey and Hawkes octave B 100 ms

Conn perfect 4th A 70 ms

Conn perfect 4th B 70 ms

Boosey and Hawkes perfect 4th A 70 ms

Boosey and Hawkes perfect 4th B 80 ms

Table 3.1: Transition times between steady state instantaneous frequencies of
the radiated sound pressure. Table shows transition times for two different horns
- modern wide bore by Conn, and early 20th century narrow bore by Boosey
and Hawkes. The two players have different approaches to slurring - Player A
attempts to ‘catch’ the intermediate resonances and Player B attempts to move
directly from one note to the next. The octave interval was played between the
4th and 8th resonant modes on the D horn, which corresponds to the notes D3 and
D4, and the perfect fourth interval was played between the 3rd and 4th resonant
modes on the F horn, which corresponds to the notes C3 and F3.
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3.3.3 Upward and downward slurred transients

In Section 3.3.2 the typical characteristics of upward lip-slurs were explored,

i.e. slurring from the lower to the higher pitched note. In music there are

obviously many more types of transitions between two notes that are called for;

this section will explore the similarities and differences between slurring upwards

and downwards over octave intervals, again on the horn. The results presented in

this section were obtained using the same high speed filming setup as previously

described and are using the same two players, but in a different laboratory session.

The instrument used for all results in this section was the modern wide bore horn,

by Conn.
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Figure 3.11: Synchronised signals for lip-slur from D3 to D4 by Player A, on
modern wide bore horn by Conn. Top: Mouthpiece pressure Middle: Lip open
area Bottom: Radiated pressure.

Examples of the measured data for an upward slur between notes D3 and

D4 as played by Player A are shown in Figure 3.11. Player A is the player

who employs the technique of attempting to catch the intermediate resonances

during a lip-slur. This figure shows much the same results as the same upward
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octave, performed in a different session, shown in Section 3.3.2. The transition

time is again around 100ms and the amplitude of the sound pressure for both

the mouthpiece and radiated sound remains significant throughout the transition.

There is again some unevenness in the instantaneous frequency of all three signals

during the transition, but the frequency does move progressively between the two

notes. Careful inspection of the frequency data revealed no discernable sounding

of the intermediate resonances. The dip in the external pressure frequency at

around 0.18s is believed to be an artifact of the analysis method, as described for

some results in Section 3.3.2.

Player B is the player who adopts the other technique of trying to jump

straight from one note to the next. Figure 3.12 shows the results for Player B

performing an octave slur, and shows the player’s technique very clearly.

−4

−2

0

2

P
re

ss
ur

e 
(k

P
a)

 

 

0.15 0.2 0.25 0.3 0.35 0.4

−0.5

0

0.5

P
re

ss
ur

e 
(k

P
a)

Time (s)

 

 

0

5

10

15

O
pe

n 
ar

ea
 (

m
m

2 )

 

 

150

200

250

300

F
re

qu
en

cy
 (

H
z)

MP Pressure
Frequency

150

200

250

300

F
re

qu
en

cy
 (

H
z)

Ext Pressure
Frequency

150

200

250

300

F
re

qu
en

cy
 (

H
z)

Open area
Frequency

Student Version of MATLAB

Figure 3.12: Synchronised signals for lip-slur from D3 to D4 by Player B, on
modern wide bore horn by Conn. Top: Mouthpiece pressure Middle: Lip open
area Bottom: Radiated pressure.

This slur is similar to the corresponding octave slur described in Section 3.3.2,

Figure 3.8, but appears much ‘cleaner’ from the results, bearing in mind that both
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slurs were deemed good and musically satisfactory. The amplitude data shown

here, in Figure 3.12, shows for all three signals a smooth decrease towards the

point where the frequency suddenly changes. The mouthpiece pressure amplitude

has around 3 cycles at the smallest value before the frequency changes from the

first note to the second. The lip opening area shows similar behaviour and both of

these signals still have a small amplitude throughout the transition. The radiated

pressure amplitude, however, becomes almost zero for a period of around 20ms

before the second note begins to sound. These results show that there is definitely

no sign of any of the intermediate resonances or any erratic behaviour of the

amplitude or frequency during the transition, as is the case in the slur performed

by Player A.

Here we have clearly seen that for upward octave slurs between the notes D3

and D4 the technique adopted by the player makes a significant difference to the

results. The corresponding downward slur results are now shown. These were

performed in the same session as the upward results, by the same players and on

the same instrument.

Figure 3.13 shows the slur between the notes D4 and D3 performed by Player

A. The behaviour of the lips and pressure signals are different from those observed

during upward slurs. Here, the frequency of the opening of the lips is almost

monotonically decreasing, with little or no decrease in amplitude of oscillation.

The pressure signals for both the mouthpiece and radiated sound show similar

erratically varying amplitudes during the transition as for the upward slur by

Player A. However, the instantaneous frequency for the two pressure signals do

not replicate those results for the upward octave slur. During the transition

the frequency results show much less erratic behaviour, and with some evidence

of steps in the frequency. On careful inspection of these frequency signals,

three small plateaus can be seen; these are more clearly seen in the mouthpiece

signal. As this transition is between the 8th and the 4th resonant modes there

are three intermediate resonances that this player is trying to catch during

the transition. Table 3.2 shows the frequency of these small plateaus and the

difference, in cents, between these frequencies and the expected frequency of

the intermediate resonances, as determined from the input impedance of this

instrument/mouthpiece input impedance curve. All three of these intermediate

frequencies are lower than the expected values, assuming these correspond to the
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Figure 3.13: Synchronised signals for lip-slur from D4 to D3 by Player A, on
modern wide bore horn by Conn. Top: Mouthpiece pressure Middle: Lip open
area Bottom: Radiated pressure.

intermediate resonances. The 6th resonant mode frequency is the furthest from

the expected value at 165 cents, which corresponds to this mode being slightly

more than one and a half semitones flat.

The expected resonant mode frequencies were obtained from the input

impedance curve shown in Figure 3.14. In the horn not all of the natural resonant

mode frequencies of the instrument are ‘in tune’ with the expected harmonic series

tuning, for example the 7th mode in inherently flat. Accomplished players can

bend these resonant mode frequencies to sound more ‘in tune’ with the harmonic

series; this can be done by adjusting the lips or using the placement of the right

hand in the bell of the instrument. Therefore, it would be expected that if

intermediate resonances are seen in lip-slurs that the frequency of these would

correspond more closely to the natural resonances of the instrument as the player

does not have time to adjust the pitch of the notes. It is for this reason that the

true frequencies of the instrument’s resonant modes are used for comparison.
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Resonant
Mode

Resonant
Mode
Frequency

Player
Frequency

Difference
in Cents

8 289 Hz 293 Hz + 22

7 255 Hz 233 Hz - 156

6 219 Hz 199 Hz - 165

5 184 Hz 178 Hz - 56

4 146 Hz 147 Hz + 12

Table 3.2: Radiated intermediate resonance frequencies of an octave lip-slur from
D4 to D3 by Player A. The resonant mode frequency is the expected frequency,
the player frequency is the frequency of the steps in the instantaneous frequency.
Difference in cents is the difference between the expected and player frequencies.
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Figure 3.14: Input impedance of the modern wide bore horn by Conn in open D
used for this work.
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Figure 3.15: Synchronised signals for lip-slur from D4 to D3 by Player B, on
modern wide bore horn by Conn. Top: Mouthpiece pressure Middle: Lip open
area Bottom: Radiated pressure.

Figure 3.15 shows the corresponding downward slur preformed by Player B.

This figure shows results that are very similar to those seen in the results from

Player A. The open area amplitude only decreases slightly before increasing to the

second steady state, and the frequency decreases more or less smoothly during

the transition. All three amplitude signals show very different characteristics

to those of this player performing the upward octave slur; the amplitude is

retained through out the transition and the two pressure signals show more erratic

behaviour. The instantaneous frequency results of the two pressure signals show

more defined steps than was seen for the results of Player A. The frequency of

these steps and the difference between them and the expected frequencies of the

intermediate resonances can be seen in Table 3.3

The duration of these intermediate frequencies is approximately 10ms, which

is significantly less than the time needed to establish a co-operative coupling

between the lips and the air column. This set of measurements uses a 4.42m long
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Resonant
Mode

Resonant
Mode
Frequency

Player
Frequency

Difference
in Cents

8 289 Hz 290 Hz + 5

7 255 Hz 236 Hz - 133

6 219 Hz 194 Hz - 208

5 184 Hz 161 Hz - 230

4 146 Hz 143 Hz - 34

Table 3.3: Radiated intermediate resonance frequencies of an octave lip-slur from
D4 to D3 by Player B. The resonant mode frequency is the expected frequency,
the player frequency is the frequency of the steps in the instantaneous frequency.
Difference in cents is the difference between the expected and player frequencies.

D horn; for this length of instrument the time for the sound wave to propagate

from the lips to the end of the instrument is approximately 10ms. For a co-

operative coupling regime to be set up between the lips and the air column, at a

particular frequency, the new frequency pressure wave would have to travel the

length of the instrument twice - from the lips to the bell end and back again. Once

the backward going wave has reached the lips, a standing wave will have been

formed within the instrument and if the lips are oscillating at the same frequency

the standing wave will act as positive reinforcement for the lips. These, however,

are not the conditions present in the case of a downward lip-slur; the lips excite

the air column at a frequency of one of the intermediate resonances, for example

the 7th resonant mode, and after 10ms the lips move away from this resonance

and begin oscillating at a different frequency. This means that as the pressure

wave corresponding to the 7th resonance is being (partially) reflected and traveling

back towards the lips, a forward going wave of a new frequency, the 6th resonant

mode frequency, is beginning to propagate down the instrument towards the bell.

Therefore, there is a finite time where there are conflicting frequency pressure

waves traveling in opposite directions within the instrument.

It is interesting to hypothesise that these short duration resonances are
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‘ringing’ effects induced by the frequency sweep of the lip oscillations and

corresponding excitation at the input of the instrument. The lip opening area

frequency decreases relatively smoothly, for both players, between the two played

notes, giving a smooth frequency sweep past each intermediate resonance.

We have seen in this section that the behaviour of the lips, pressure signals

and corresponding instantaneous frequencies are not consistent between upward

and downward lip-slurs. It is not yet clear why players, such as Player A, are able

to force their lips into making a smooth transition from a high resonant mode to

a lower one, but less able to do so when moving from a low to high resonance, or

why it is possible for Player B to jump straight from one resonance to another

when slurring upwards but shows very similar characteristics to Player A when

slurring downwards.

3.3.4 Slurred transients in different registers

This section presents slurred transients over octave intervals in different registers.

Thus far the octave lip-slurs examined on the horn were in the lower end of the

instruments range, between the 4th and the 8th resonant modes; this section will

explore the similarities and differences between transitions between these modes

and the octave above, between the 8th and 16th resonant modes.

As with all brass instruments the input impedance of the horn does not have

equal amplitude over all the input impedance peaks. Figure 3.16 shows the input

impedance of the Meinl & Lauber/Paxman ‘baroque’ horn crooked in D used in

this set of experiments. A photograph of this horn is shown in Figure 3.17.

The amplitude of input impedance peaks, shown in measurements of brass

instruments, are affected by the mouthpiece used; in this work a PHC23a

mouthpiece was used, which was chosen as it is a standard medium cup horn

mouthpiece. Using this instrument/mouthpiece combination the input impedance

envelope is relatively flat over the low-mid frequencies; the resonant modes under

investigation here are labeled on the input impedance curve. The amplitude of the

4th and the 8th modes are shown to have only a small difference in amplitude, with

the 8th mode being approximately 1 MOhm higher than the 4th mode. However,

the 16th mode lies on the other side of the small peak in the amplitude envelope,

and has a significantly lower amplitude than the 8th mode.

The experimental setup for this set of experiments differs from the setup
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Figure 3.16: Input impedance of the Meinl & Lauber/Paxman ‘baroque’ horn
crooked in D used for this work.

previously described, and is shown in Figure 3.18. This work does not include

visualisation of the player’s lips and therefore has a more simplified setup. The

player is able to hold the instrument in the normal playing position while the

pressure is simultaneously measured in the mouthpiece and radiated from the

bell. The radiated sound was measured using a 1/2-inch Sennheiser pressure-

field microphone placed one bell radius from the bell of the instrument, while

the pressure in the mouthpiece was measured using a 1/4-inch Bruël and Kjær

4938 pressure-field microphone. The two pressure signals were simultaneously

recorded using an R-09 EDIROL by Roland solid state WAVE/MP3 recorder.

The mouthpiece was modified to accommodate the 1/4-inch microphone, as

is shown in Figure 3.19. A hole was bored in the mouthpiece cup to allow the

microphone to fit into the wall of the mouthpiece cup by means of a small brass

coupler. The microphone diaphragm was then flush with the inside cup wall.
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Figure 3.17: Horn used for the work described in this section, a Meinl &
Lauber/Paxman ‘baroque’ horn modelled after an 18th century instrument by
Huschauer, Vienna c.1770

Figure 3.18: Experimental setup for transients experiments, simultaneously
recording pressure in the mouthpiece and radiated pressure from the bell of the
instrument.
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Figure 3.19: Modified mouthpiece to accommodate the 1/4-inch microphone to
record the pressure signal within the mouthpiece.

All results shown in this section were performed by Player B. Figures 3.20

and 3.21 show upward and downward octave slurs similar to those presented in

Section 3.3.3, between the 4th and the 8th resonant modes which correspond to

the notes D3 and D4, but in this case on a different horn and performed in a

different laboratory session.

The results shown here display similar characteristics to those previously

presented for both upward and downward lip-slurs over this octave. The upward

slur shows that the instantaneous frequencies for both the mouthpiece and

radiated pressure change almost instantaneously from the lower to the higher

note. The pressure signals also show similar characteristics to those previously

seen on the other horns and the same player. The pressure measured in the

mouthpiece shows a significant drop during the transition, to around 0.5kPa, and

the radiated pressure amplitude drops to almost zero for around 30ms.

The downward slur results shown in Figure 3.21 also show similar results to

those in the previous section. Both the pressure amplitudes for the mouthpiece

and radiated pressure show the same slightly erratic behaviour during the

transition and do not drop in amplitude to the same extent as the upward

transition. The instantaneous frequency results for the mouthpiece pressure again

show evidence of steps in the frequency during the transition, which correspond

approximately to the intermediate frequencies. This is also true for the radiated

pressure, although the steps in the instantaneous frequency are much less defined
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Figure 3.20: Synchronised signals for lip-slur from D3 to D4 by Player B, on the
‘baroque’ horn by Meinl & Lauber/Paxman. Top: Mouthpiece pressure Bottom:
Radiated pressure.
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Figure 3.21: Synchronised signals for lip-slur from D4 to D3 by Player B, on the
‘baroque’ horn by Meinl & Lauber/Paxman. Top: Mouthpiece pressure Bottom:
Radiated pressure.
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than those seen on the modern Conn horn in Section 3.3.3.

Resonant
Mode

Resonant
Mode
Frequency

Player
Frequency

Difference
in Cents

8 294 Hz 296 Hz + 12

7 256 Hz 241 Hz - 104

6 220 Hz 191 Hz - 243

5 182 Hz 162 Hz - 200

4 144 Hz 142 Hz - 24

Table 3.4: Radiated intermediate resonance frequencies of an octave lip-slur from
D4 to D3 by Player B. The resonant mode frequency is the expected frequency,
the player frequency is the frequency of the steps in the instantaneous frequency.
Difference in cents is the difference between the expected and player frequencies.

Table 3.4 shows the difference in frequency between the expected resonances

and the intermediate instantaneous frequency steps. The 6th resonant mode shows

the largest difference at 243 cents flat, which is more than seen in the previous

section on the modern horn by Conn.

Figures 3.22 and 3.23 show the results for Player B performing upward

and downward lip-slurs between the 8th and the 16th resonant modes, which

correspond to the notes D4 and D5. This lip-slur is an octave higher than those

previously discussed and spans the mid to high range of normal playing on the

horn. It is clear that there is not the same difference in characteristics between

the upward and downward lip-slurs in this register; the upward slur does not

show the same almost instantaneous frequency transition between the two notes,

as in the lower octave, but instead shows behaviour very similar to that of the

downward slur. There are seven clear intermediate peaks shown in both the

upward and downward frequency results which is in line with the number of

resonant modes between the played notes of D4 and D5. The difference between

the expected frequencies and those seen in the results shown here are presented in

Tables 3.5 and 3.6. As with the lower register all the intermediate resonances are
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Figure 3.22: Synchronised signals for lip-slur from D4 to D5 by Player B, on the
‘baroque’ horn by Meinl & Lauber/Paxman. Top: Mouthpiece pressure Bottom:
Radiated pressure.
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Figure 3.23: Synchronised signals for lip-slur from D5 to D4 by Player B, on the
‘baroque’ horn by Meinl & Lauber/Paxman. Top: Mouthpiece pressure Bottom:
Radiated pressure.
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flat in comparison to the expected resonant frequencies, by up to 270 cents in the

upward slur and 182 cents in the downward. Although the transition over this

range encompasses more intermediate resonances, the transition time for both the

upward and downward slurs is no longer than for the lower register transitions,

at 100ms.

It has previously been shown that for an upward slur, in the lower register of

the horn, the pressure amplitude of the radiated signal dies away to almost zero

during the transition, and the mouthpiece pressure also diminishes significantly.

The downward slur in the lower octave showed much less of a decrease in both

pressure signals during the transition period. In the upper register shown here

the pressure amplitude for all the pressure signals show no decrease in amplitude

during the transition for both the upward and downward lip-slurs.

The player was not aware of any change in technique when slurring in different

registers; the player is again aiming to move as quickly as possible between the

two notes and create a smooth sound, while having the sensation of continuously

blowing throughout the transition. It is not yet clear why it is possible for players

to ‘catch’ resonances in the upper register when slurring in both directions yet be

able to make an almost instantaneous transition upwards in the lower register. It

is however interesting to note that these two intervals lie in very different parts

of the input impedance curve; the lower octave is over a number of resonances

that lie to the left of the peak in the impedance envelope and the upper octave

transition lies to the right of this peak and at the point where the resonances

decrease significantly in amplitude.
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Resonant
Mode

Resonant
Mode
Frequency

Player
Frequency

Difference
in Cents

8 294 Hz 296 Hz + 12

9 330 Hz 386 Hz - 270

10 368 Hz 425 Hz - 247

11 406 Hz 460 Hz - 216

12 443 Hz 485 Hz - 155

13 480 Hz 520 Hz - 138

14 516 Hz 542 Hz - 84

15 552 Hz 568 Hz - 47

16 590 Hz 595 Hz - 13

Table 3.5: Radiated intermediate resonance frequencies of an octave lip-slur from
D4 to D5 by Player B. The resonant mode frequency is the expected frequency,
the player frequency is the frequency of the steps in the instantaneous frequency.
Difference in cents is the difference between the expected and player frequencies.
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Resonant
Mode

Resonant
Mode
Frequency

Player
Frequency

Difference
in Cents

16 590 Hz 589 Hz - 2

15 552 Hz 539 Hz - 41

14 516 Hz 500 Hz - 54

13 480 Hz 446 Hz - 126

12 443 Hz 400 Hz - 175

11 406 Hz 367 Hz - 174

10 368 Hz 331 Hz - 182

9 330 Hz 303 Hz - 147

8 294 Hz 288 Hz - 34

Table 3.6: Radiated intermediate resonance frequencies of an octave lip-slur from
D5 to D4 by Player B. The resonant mode frequency is the expected frequency,
the player frequency is the frequency of the steps in the instantaneous frequency.
Difference in cents is the difference between the expected and player frequencies.
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3.4 Forced oscillation input - Experimental tech-

nique

Accomplished brass instrument players are very adept at manipulating their lips

to produce the best results from the instrument and compensate for inadequacies

of the particular instrument. These often subconscious corrections that the player

can achieve make it difficult to study the system as independent mechanical

components that are coupled together. One way in which we can eliminate the

player’s unknowing adjustments to the system is to use a forced oscillation input

to the instrument. In using a forced oscillation system it can be assumed that this

excitation source is independent of feedback from the instrument itself, unlike the

player’s lips which are subject to reinforcement from the standing wave within

the instrument. This set of experiments were carried out to investigate to what

extent the results already discussed, are effects of ringing of resonances from a

forced oscillation, opposed to the dependance on the interaction with the player’s

lips.

3.4.1 Instruments

Three different brass instruments were used in the forced oscillation experiments;

the horn used for a number of the experiments described in the previous section

- the Meinl & Lauber/Paxman ‘baroque’ horn, a Smith-Watkins trumpet, and a

King tenor trombone; these instruments were chosen as they have significantly

different lengths of tubing and bore profiles.

3.4.2 Experimental setup

The forced oscillation driving force was produced by means of a JBL compression

driver loudspeaker coupled to the instrument. The loudspeaker was coupled to

the mouthpiece of the instrument using a plastic coupler that is able to house

a 106B PCB Piezotronics dynamic pressure transducer to measure the pressure

at the mouthpiece entrance. The radiated pressure was measured using a Bruël

and Kjær 4938 pressure-field microphone placed in the plane of the bell of the

instrument. The experimental setup with the horn in place is shown in Figure

3.24.
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Figure 3.24: Photograph of horn experimental setup for forced oscillation
experiments.

The input signal used was a linear sine sweep mimicking a slurred transient

performed by a player. The signal begins with a steady frequency before sweeping

over a specified time period to a second steady frequency. The sweep time used

was either 50ms or 100ms; the time was chosen for each slur as the closest to

the transition time taken in the player results. The frequency range in which

the sweep covered was determined by the resonant modes of the instrument, as

to have a slur between two exact resonant modes. For example, in the horn,

the resonant frequencies of the 4th and 8th modes were found to be 165Hz and

315Hz respectively. Both the input and output microphone pressure signals were

recorded using a Marantz digital solid state recording device.

The results will be presented as in Sections 3.3.2, 3.3.3 and 3.3.4 and use the

same instantaneous frequency analysis methods.
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3.5 Forced oscillation input - Results

The trumpet and trombone sections will show the forced oscillation results and

the horn section will show the forced oscillation results with the corresponding

player results, performed by Player B, as previously discussed in Section 3.3.4.

3.5.1 Trumpet results

The trumpet results presented here in Figures 3.25 and 3.26 are forced oscillation

slurs between the 4th and the 8th resonant modes of the trumpet, which

corresponds to the notes B[4 and B[5. This interval is in the mid to high

range of the trumpet’s normal playing range. The results show the pressure

signals recorded at the mouthpiece entrance and radiated from the bell of the

instrument, and for both the upward and downward transitions the sweep time

used was 100ms. As expected, because of the nature of the excitation signal, the

instantaneous frequency signal at the mouthpiece increases steadily between the

two resonant mode frequencies. The frequency of the radiated pressure shows a

much less smooth transition, there are a number of peaks in the frequency but no

clear steps/plateaus. However, in the downward slur there is some indication of

the frequency flattening around the times of 1.4s, 1.42s, and 1.45s; this effect is

only very slight and only present in the downward slur. If this could be classed as

an intermediate frequency effect it would be in line with the horn results, in that

it seems to be easier for the players to catch the intermediate resonant modes in

a downward slur.

3.5.2 Trombone results

The trombone results are between the 3rd and the 6th resonant modes which

correspond to the notes F3 and F4; this octave interval is in the mid range of the

trombone. Again the frequency of the mouthpiece pressure signals move smoothly

between the two notes, and the radiated pressure frequency shows the similarly

varying results as seen with the trumpet. There is no sign of intermediate

resonance frequencies during the transition but it is interesting to note that,

both in the upward and downward transitions, the frequency takes a relatively

large number of cycles before it settles on the second note.
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Figure 3.25: Forced oscillation slur from B[4 to B[5, on the Smith Watkins
trumpet with loudspeaker excitation source. Top: Mouthpiece pressure signal.
Bottom: Radiated pressure signal. Loudspeaker transition time of 100ms.
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Figure 3.26: Forced oscillation slur from B[5 to B[4, on the Smith Watkins
trumpet with loudspeaker excitation source. Top: Mouthpiece pressure signal.
Bottom: Radiated pressure signal. Loudspeaker transition time of 100ms.
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Figure 3.27: Forced oscillation slur from F3 to F4, on the medium bore trombone
by King with loudspeaker excitation source. Top: Mouthpiece pressure signal.
Bottom: Radiated pressure signal. Loudspeaker transition time of 100ms.
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Figure 3.28: Forced oscillation slur from F4 to F3, on the medium bore trombone
by King with loudspeaker excitation source. Top: Mouthpiece pressure signal.
Bottom: Radiated pressure signal. Loudspeaker transition time of 100ms.
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3.5.3 Horn results

In the case of the horn, the forced oscillation results are compared directly with

the corresponding player results. Figure 3.29 shows the upward results in the

lower register, between the 4th and 8th resonant modes, where the instantaneous

frequency of the player results moves suddenly between the two notes; it is for

this reason that the forced oscillation sweep time was set at 50ms. The forced

oscillation frequency results do not show the same straight transition between

the two resonant modes, but instead show an unsteady frequency transition

that shows evidence of intermediate frequencies, demonstrating that even at this

very fast transition speed there is still some ‘ringing’ effect of the intermediate

resonances that can be seen in the small peaks/shoulders.

Figure 3.30 shows the corresponding downward slur over this range with the

forced oscillation sweep time set at 100ms as the player results show a longer

transition time than for the upward transition. Both the player and forced

oscillation results show an uneven decrease in frequency between the two notes.

The large peak in the loudspeaker instantaneous frequency at around 1.25s can

be said to be a consequence of the analysis program and not reliable; bearing

this in mind there is still evidence of intermediate frequency peaks during the

transition as seen in the player results. However, the intermediate frequencies

are not as clear as have been previously seen in the higher register player results.

This downward, loudspeaker slurred result does have a much closer frequency

transition to the player result than the corresponding upward result where the

player manages to change the frequency almost instantaneously.

Figures 3.31 and 3.32 show the upward and downward results for the horn

measurements over the upper register octave range between the 8th and 16th

resonant modes of the instrument; notes D4 and D5. It can be seen from the

results that the forced oscillation instantaneous frequency shows well defined

intermediate peaks for both slurs. When you have the real situation of a musician

playing the instrument there is feedback that returns to the player’s lips from the

resonances of the instrument, which could make it easier for the player to ‘latch’

onto the intermediate resonances. It is interesting to note that the influence of

the resonances on the instantaneous frequency of the radiated sound in these

figures are not strongly dependant on this feedback as the loudspeaker cannot be

effected by the returning pressure wave. It is assumed that the loudspeaker is
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Figure 3.29: Lip-slur from D3 to D4, on the ‘baroque’ horn by Meinl &
Lauber/Paxman, showing the radiated pressure signals. Top: Player test by
Player B. Bottom: Loudspeaker test. Loudspeaker transition time of 50ms.
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Figure 3.30: Lip-slur from D4 to D3, on the ‘baroque’ horn by Meinl &
Lauber/Paxman, showing the radiated pressure signals. Top: Player test by
Player B. Bottom: Loudspeaker test. Loudspeaker transition time of 100ms.
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Figure 3.31: Lip-slur from D4 to D5, on the ‘baroque’ horn by Meinl &
Lauber/Paxman, showing the radiated pressure signals. Top: Player test by
Player B. Bottom: Loudspeaker test. Loudspeaker transition time of 100ms.
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Figure 3.32: Lip-slur from D5 to D4, on the ‘baroque’ horn by Meinl &
Lauber/Paxman, showing the radiated pressure signals. Top: Player test by
Player B. Bottom: Loudspeaker test. Loudspeaker transition time of 100ms.
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decoupled from the resonating air column in the instrument, and that the input

frequency will be unaffected by the resonances of the instrument. It can, however,

be seen from these results that there is a ‘ringing’ effect of the intermediate

resonances which is producing the peaks in the frequency as the input sine wave

sweeps past these resonances. The radiated pressure that is recorded is showing

a mixture of the input signal that has traveled through the instrument, and been

partially radiated, and the intermediate resonances that are ‘ringing’ within the

instrument.

These slurred transient results, with both the player and loudspeaker

excitation sources, will be compared with a theoretical computational model in

Chapter 4.

3.6 Conclusions

This chapter has discussed two separate experimental approaches to the study of

slurred transients on brass instruments. A number of different instruments were

used, along with players who employ different techniques when slurring between

notes.

3.6.1 Visualisation of the lips

High speed photography of the lips, synchronised with pressure signals from

inside the mouthpiece and radiated from the bell of the instrument has been

successful in visualising the lips under playing conditions. The pressure signals

and instantaneous frequency of all experimental data have been analysed.

Typical characteristics of slurred transients

It was shown that, in horn playing, the player’s approach to lip-slurring does affect

both the pressure and instantaneous frequency results. Presented and discussed

were slurs over an upward octave and perfect fourth interval, in the lower register

of the horn. It was seen that slurs, by both players, range in transition time

between 70-100ms. The results from the player who uses the quick jump between

notes showed that there was indeed a quick frequency transition from the first note

in both pressure signals and lip opening area. This quick transition did not jump
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straight to the second note immediately but jumped up some way before leveling

out more slowly onto the second note. It was also seen that the radiated pressure

dies away to almost nothing during the transition. When the slurring technique

used was that of attempting to catch the intermediate resonances, very different

results were seen. There was a significant pressure amplitude seen throughout

the transition in both mouthpiece and radiated signals, and all instantaneous

frequency results showed an erratic transition.

Upward and downward slurred transients

This section showed that the characteristics of upward and downward octave slurs

in the lower register of the horn are significantly different. Players who are able

to jump straight from the lower note to the higher one are not able to produce

the same frequency transition during a downward slur. The downward slurs for

both players, with different techniques, show marked steps in the instantaneous

frequency. These steps have been related to the intermediate resonances and

it was found that they are all flat in comparison, by up to more than two

semitones. It is yet unclear why players are able to produce a smooth frequency

transition during an upward slur but show signs of intermediate resonances during

a downward slur.

Slurred transients in different registers

When investigating slurred octave transitions in the upper register of the horn

it was found that both techniques showed similar results; for both upward and

downward slurs there are clear intermediate peaks corresponding to the number

of intermediate resonances. Again the frequency of these are all flat compared to

the resonant modes of the instrument, by up to two and a half semitones.

3.6.2 Forced oscillation

The forced oscillation experiments allow the instrument to be excited in a similar,

but less complex, way as by a human player and it is assumed that the loudspeaker

is decoupled from the system. The trumpet and trombone results showed that,

when excited by a forced linear sine sweep, there were no discernable intermediate

resonances shown in the radiated pressure signals. The horn, however, showed
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significantly different results. When compared with player results, in the lower

register, it was seen that there were signs of intermediate resonances ringing

in some way, in both the upward and downward slurred transitions. This is

in line with the player results for the downward slur but not the upward, as

Player B shows a smooth jump in frequency between the two notes. The

upward forced oscillation result has shown that even at transition speeds of

50ms there is still some ringing effect seen in the frequency transition. In the

upper register of the horn the forced oscillation results showed remarkably similar

instantaneous frequency results to those of the human player, with a number

of very distinct peaks corresponding to the number of intermediate resonances,

both in the upward and downward cases. These results show that the ringing

of the intermediate resonances is not due to the coupling of the system as the

loudspeaker is taken to be decoupled from the instrument. It is unsurprising in

some ways, as we know that the short time these resonances are seen to ‘ring’

for is much too short for the lips of the player to have received constructive

reinforcement from any intermediate resonances.
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Chapter 4

Computational modelling of

slurred transients

This chapter will introduce the one dimensional finite difference computational

model used to investigate transients in brass instruments. Two different input

parameter approaches will be explored; the first results section will present results

from linear sine sweep input data, whereas the second results section will show

results using simplified player pressure and frequency input data. The results

here will be compared with the experimental player and forced oscillation results

presented in Chapter 3.

4.1 Introduction

In the study of playing characteristics of brass instruments, tests with human

players are invaluable but it is often interesting, and necessary, to compare these

results with those gained through computational methods. A good computational

model, which produces results that replicate human player data, can give a fuller

insight into the mechanics of the system and allow changes to the system to be

made quickly and easily; for example the bore profile of an instrument can be

altered easily using a computational approach when it is prohibitive to alter the

physical instrument.

The model used in this work was developed by Stefan Bilbao at the University

of Edinburgh and is detailed in [Bilbao 11], along with the detailed numerical

synthesis theory in [Bilbao 09]; the model uses a simple finite difference time
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4.2. Webster’s equation and acoustic tube modelling

domain (FDTD) method and includes acoustic radiation and viscothermal losses

in the latter use of it.

4.2 Webster’s equation and acoustic tube mod-

elling

A standard lossless model of one-dimensional linear wave propagation in an

acoustic tube [Morse 68] can be derived from the linearised fluid dynamic

equations of conservation of mass and momentum:

S

ρc2
pt = −ux

ρ

S
ut = −px t ≥ 0, x ∈ [0, L] (4.1)

where u(x, t) and p(x, t) are the volume velocity and pressure respectively at any

point x and at time t and subscripts t and x refer to time and space differentiation,

respectively. Density and wave speed are ρ and c respectively, S(x) is the cross-

sectional area of the tube (more precisely, the area of an isophase surface of a

propagating wavefront [Helie 03]) at position x, and L is the length of the tube.

See Figure 4.1.

S(0) area S(x)
tube cross sectional

excitation

x = 0
x

x = L

radiation

Figure 4.1: Schematic of the one dimensional horn model, with excitation at the
mouthpiece and radiated sound from the bell.

From this first-order system a single second-order system is often derived and

referred to as Webster’s equation [Webster 19]:

SΨtt = c2(SΨx)x (4.2)
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where Ψ(x, t) is a velocity potential, and where p = ρΨt, u = −SΨx. As well

as serving as a basic tool in wind instrument modelling, this equation is the

starting point for a number of speech synthesis algorithms [Rabiner 78], such as

the Kelly-Lochbaum model [Kelly 62]. There are many assumptions which lead

to this model; these include, linearity, losslessness, slow spatial variation in S(x)

and smallness of radial dimensions relative to wavelengths. It should be noted

that the simulation program works with dimensionless variables.

At the radiating end of the tube, a standard approximation to an unflanged

tube end is employed [Atig 04, Rabiner 78]. The model of the lips is a standard

oscillator model subject to a nonlinear pressure/flow relationship (Bernoulli’s

Law) [Cullen 00a]. The dynamics of the lips can be represented by the following:

d2H

dt2
+
ωL

QL

dH

dt
+ ω2

LH =
−∆pSe

mL

(4.3)

where H(t) is the distance between the lips at time t, ωL is the natural angular

frequency of the lips, QL is the quality factor of the lips, mL is the effective mass

of the system and is equal to m/2 (where m is the mass of each lip) and Se is the

effective surface area of the lips. The pressure difference across the lips is defined

as ∆p = Pm−P where Pm is the overpressure in the mouth and P is the pressure

in the mouthpiece. The nonlinear way in which the pressure difference across the

lips and the particle velocity in the mouthpiece, U , are related is described by

the Bernoulli relation:

Pm − P =
1

2
ρU2 (4.4)

Using the version of Webster’s equation shown in Equation 4.2 the viscother-

mal losses within the instrument are not modelled; this is a very important

effect, especially in portions of the bore of small radius (the throat). The

version of the model not including these losses is used for the player input results

presented in Section 4.3.3. The results in Sections 4.3.1 and 4.3.2, however,

were produced using a version of the model which does include viscothermal

losses. The inclusion of viscothermal losses is difficult to model properly using

a time domain model, and most acoustic tube loss models are based on an

impedance description in the frequency domain [Keefe 84, Causse 84], with the

exception of [Amir 95a, Amir 95b] which uses a time domain model concerning
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short cylindrical or conical sections. The model used in this work transforms this

frequency domain impedance description to a discrete space-time approximation

which introduces extra fractional derivative terms into Equation 4.2, which then

becomes the Webster-Lokshin equation [Haddar 03].

4.2.1 A simple finite difference scheme

Suppose that Ψn
l is a grid function, defined for integer l and n, representing an

approximation to Ψ(x, t) at x = lh, and t = nk, where k is a time step, and where

h is a grid spacing; fs = 1/k is the sample rate. Figure 4.2 shows graphically

the grid function used in the finite difference scheme. A simple finite difference

scheme for Webster’s equation can be written as [Bilbao 09]:

Ψn+1
l =

λ2(Sl+1 + Sl)

2[S]l
Ψn

l+1 +
λ2(Sl + Sl−1)

2[S]l
Ψn

l−1+(
2− λ2(Sl+1 + 2Sl + Sl−1)

2[S]l

)
Ψn

l −Ψn−1
l

(4.5)

where λ = ck/h, and Sl is a grid function which consists of sampled values of the

continuous function S(x) at locations x = lh, where [S]l is an approximation to

the continuous function S(x) [Bilbao 09], and [S]l = 1
4
[Sl−1 + 2Sl + Sl+1]. There

is also a stability condition that dictates that λ ≤ 1, and should be chosen as

close to 1 as possible.

Again this is the lossless case, and the fractional derivative terms introduced

to Webster’s equation must also be dealt with in the finite difference scheme

and the approach taken is that of discrete time approximation of the fractional

derivative terms, as detailed in [Bilbao 11, Mignot 09].

The pressure used for analysis here was extracted at the radiating end of the

instrument. This could be an area of possible concern as the experimental results

use radiated pressure as measured at a distance of one bell radius from the end

of the tube, in the radiation field. However, because the model uses an isophase

surface of the propagating wavefront, the actual final point in the simulation will

be calculated at some distance, possibly of the order of one bell radius, outside

the physical plane of the bell, and because of this it is not entirely unrelated to

the experimental measurement point used.
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Figure 4.2: Profile of an acoustic tube and finite difference grid, where each point
on the grid represents Ψn

l , the grid function, h is a grid spacing, k is a time step
and S represents the location in the acoustic tube.

Sources of possible error within the computational model include:

• Lack of viscothermal losses in some results

• Location of radiated sound readout

• Correct lip model parameters

4.2.2 Model input parameters

The input parameters needed for the model are mainly taken from experimental

data and include the bore profile of the instrument together with information

about the reed (i.e. the player’s lips). The reed information required includes the

reed area, mass and resonant frequency, and also information about the pressure
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in the oral cavity of the player. Values for the mass, damping, surface area and

quality factor of the lips were estimated to allow the lip model to oscillate, with an

attempt to calculate the mass and surface area values from experimental images

of the lips.

Many of these parameters are time dependent and for this reason the

instantaneous resonant frequency of the lips and the blowing pressure in the

player’s mouth are based on the experimental work presented in Chapter 3 for

the model using the player input data. Examples of the instantaneous frequency

during upward and downward slurs between the notes D3 and D4 are shown

in Figure 4.3, together with the resonant frequency of the reed. The model

presented here assumes that the lips of the player act as an ‘outward-swinging

door’ as described in [Fletcher 99a]. The blowing pressure recorded in the player’s

mouth during a slur between D3 to D4 are shown in Figure 4.4, together with the

simplified pressure profiles used as the input to the model.

In the case of the forced oscillation results, as discussed in Sections 4.3.1

and 4.3.2, the lossy instrument model is not coupled to the lip model but has a

similar excitation method as used in the loudspeaker forced oscillation tests. The

excitation signal used was a simple sine sweep which began with a period of steady

frequency at the first resonant mode frequency and then swept linearly, over a

specified time period, to the steady frequency of the second resonant mode in the

transition. The results presented in Section 4.3.3 however, use the complete non-

lossy simulation including lip model with the input parameters discussed above

for mouth pressure and resonant lip frequency.
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Figure 4.3: Pressure histories measured in the players mouth together with the
simplified profile used as input to the model. Top: Horn upward slur from D3

to D4, transition time 30ms. Bottom: Horn downward slur from D4 to D3,
transition time 30ms.

79



4.2. Webster’s equation and acoustic tube modelling

0 0.1 0.2 0.3 0.4 0.5

100

150

200

250

300

Time (s)

F
re

qu
en

cy
 (

H
z)

 

 

Resonant freq of lip as model input

Measured f0 in mouthpiece

Student Version of MATLAB

0 0.1 0.2 0.3 0.4 0.5

100

150

200

250

300

Time (s)

F
re

qu
en

cy
 (

H
z)

 

 

Resonant freq of lip as model input
Measured f0 in mouthpiece

Student Version of MATLAB

Figure 4.4: Instantaneous frequency of the pressure signal measured in the
mouthpiece together with the resonant frequency of the lips used as input to
the model Top: Horn upward slur from D3 to D4, transition time instantaneous
i.e. within one cycle of the lips. Bottom: Horn downward slur from D4 to D3,
transition time 8ms.
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4.3 Results

4.3.1 Forced oscillation input - horn

All results presented in this section are concerning the Meinl & Lauber/Paxman

baroque horn as played by Player B, the player who approaches lip-slurs with the

technique in which the first note is stopped and the second started as quickly and

smoothly as possible without attempting to catch the intermediate resonances.

Figure 4.5 shows the results for an upward octave slur between the 4th and the

8th resonant modes, which corresponds to the notes D3 and D4. The player and

loudspeaker results are those which have been discussed in detail in Chapter 3.

Both the loudspeaker and the model input sine sweep signals were set to have a

transition time of 50ms as the player data has a very short transition time.
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Figure 4.5: Lip-slur from D3 to D4, on the ‘baroque’ horn by Meinl &
Lauber/Paxman, showing the radiated pressure signals. Top: Played slur.
Middle: Loudspeaker forced oscillation Bottom: Modelled forced oscillation
including losses. The loudspeaker test and model were set to have the transition
take place over 50ms.

The instantaneous frequency of both the loudspeaker and modelled results

do not replicate the quick smooth transition that is seen in the player results.
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4.3. Results

However, with a forced oscillation input being used as the excitation source

in the model the results show very similar characteristics to the loudspeaker

forced oscillation results; this is reassuring as it shows the model can replicate

the frequency change in the radiated pressure shown in the real instrument,

when using a similar excitation source that is not a human player. As with

the loudspeaker results the modelled results show intermediate peaks in the

instantaneous frequency; these are more pronounced in the model results. The

model is showing that even at short transition speeds of 50ms, when there

is feedback from the excitation source, there is some possible ‘ringing’ of the

intermediate resonances in an upward slurred transition.

The corresponding downward slur results between the 8th and the 4th resonant

modes are shown in Figure 4.6. In this case and all following results the

loudspeaker and model input sine sweep transition times were set at 100ms.
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Figure 4.6: Lip-slur from D4 to D3, on the ‘baroque’ horn by Meinl &
Lauber/Paxman, showing the radiated pressure signals. Top: Played slur.
Middle: Loudspeaker forced oscillation Bottom: Modelled forced oscillation
including losses. The loudspeaker test and model were set to have the transition
take place over 100ms.
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The results in the previous chapter have shown that in the lower register of the

horn the characteristics of upward and downward slurs are very different. It was

also shown in the previous chapter that the loudspeaker test results have closer

instantaneous frequency characteristics in the downward slur than the upward;

this is also true of the modelled results. The model results show an uneven

decrease in frequency between the two notes, with evidence of intermediate

frequency steps within the uneven transition. Again the modelled results do

have peaks and troughs in similar places as in the loudspeaker test results.

As in Chapter 3 the octave between the 8th and the 16th resonant modes,

in the upper register, has been explored. Figure 4.7 shows the upward slurred

results between the notes D4 and D5.
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Figure 4.7: Lip-slur from D4 to D5, on the ‘baroque’ horn by Meinl &
Lauber/Paxman, showing the radiated pressure signals. Top: Played slur.
Middle: Loudspeaker forced oscillation Bottom: Modelled forced oscillation
including losses. The loudspeaker test and model were set to have the transition
take place over 100ms.

For this higher register upward transition it can be seen that the player,

loudspeaker and model results show significantly similar instantaneous frequency

results; there are a number of distinct peaks and troughs in each result which
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4.3. Results

correspond to the number of intermediate resonant modes between the 8th and

the 16th mode frequencies. The intermediate peaks are more clearly defined

in the loudspeaker and model results than in the player test. The player test

pressure amplitude shows slight variation in amplitude during the transition, with

a slight increase in amplitude several times during the transition. This variation in

pressure amplitude is more clearly seen in the loudspeaker and model tests; there

are a corresponding number of amplitude increases as intermediate resonances

which could further indicate that there is a ringing effect of each resonance as the

frequency sweeps over them.

Figure 4.8 shows the corresponding downward slur from the note D5 to D4.
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Figure 4.8: Lip-slur from D5 to D4, on the ‘baroque’ horn by Meinl &
Lauber/Paxman, showing the radiated pressure signals. Top: Played slur.
Middle: Loudspeaker forced oscillation Bottom: Modelled forced oscillation
including losses. The loudspeaker test and model were set to have the transition
take place over 100ms.

The downward slur in the upper register shown here shows very similar

results to that of the corresponding upward slur; all three results show very

similar characteristics, with the intermediate peaks and troughs being more well

defined in the loudspeaker and model results, and the two forced oscillation results
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4.3. Results

showing strikingly similar frequency characteristics.

4.3.2 Forced oscillation input - trumpet

This modelling work uses the Smith-Watkins trumpet and compares forced

oscillation results with those already presented in Chapter 3. Figures 4.9 and

4.10 show the results of the loudspeaker test and the model results of upward

and downward octave transitions between the 4th and the 8th resonant modes of

the trumpet, which corresponds to the notes B[4 to B[5 respectively.

It can be seen in both the upward and downward trumpet slurs that the

modelled results compare favourably with the loudspeaker test results and show

similar characteristics. It is interesting to note again that in the upward slur there

is no evidence of any discernable intermediate resonant frequencies, in either the

loudspeaker or the modelled results, during the transition and yet a large number

of small peaks and troughs in the frequency results. The downward slur shows

much of the same results but with careful inspection there is slight indication of

three intermediate steps in the frequency which could correspond to the 7th, 6th

and 5th resonant modes of the instrument. The model results have verified that

this slight evidence is not solely present in the loudspeaker trumpet test results.

These results broadly show that in the absence of a lip model, when the

system is forced to oscillate with a simple linear sine sweep, the computational

model replicates very closely the experimental results for both the horn and the

trumpet. In this set of the results the model used includes the viscothermal loss

model.
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Figure 4.9: Lip-slur from B[4 to B[5, on the Smith Watkins trumpet, showing
the radiated pressure signals. Top: Loudspeaker forced oscillation Bottom:
Modelled forced oscillation including losses. The loudspeaker test and model
were set to have the transition take place over 100ms.
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Figure 4.10: Lip-slur from B[5 to B[4, on the Smith Watkins trumpet, showing
the radiated pressure signals. Top: Loudspeaker forced oscillation Bottom:
Modelled forced oscillation including losses. The loudspeaker test and model
were set to have the transition take place over 100ms.
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4.3.3 Player pressure input

The results presented in this section were performed by Player B on the modern

wide bore horn by Conn, with the player data having been previously discussed

in Chapter 3. Figures 4.11 and 4.12 show respectively upward and downward

lip-slurs between the 4th and 8th resonant modes of the horn, which correspond

to the notes D3 and D4. The modelled results shown here have been calculated

using the lossless computational model.

As discussed previously, the upward player test results show the pressure

signal having a very small amplitude during the transition and a sharp change in

frequency between the initial and final sounded notes. Unlike the player pressure

signal, the modelled results show a significant pressure amplitude throughout

the transition. A possible cause of this increased amplitude signal could be the

lack of viscothermal losses in the model, causing there to be less dampening as

the wave propagates through the instrument. As the resonant frequency of the

lips increases, between the initial and final notes, the intermediate resonances

will be excited in some way as the frequency sweeps past each in turn; it could

be the case in the model that these intermediate resonances ring on for several

cycles after they have been excited and hence create the larger pressure amplitude

during the transition, again because there are no viscothermal losses modelled

within the instrument. However, if this were fully the case it would be assumed

that the instantaneous frequency result from the model output would show some

signs of intermediate resonances ringing. The two peaks seen in the modelled

results between 1.05s and 1.10s are not considered to be reliable as the pressure

signal is very complex and aperiodic at this point meaning that the frequency

analysis program has difficulty in ascertaining the correct fundamental frequency.

However, the model does show a smooth and direct transition between the two

notes as with the results of the human player.

The downward slur results show that for both the player and model results

there is a similar level of pressure amplitude shown during the transition. The

instantaneous frequency shows similar behaviour to that seen in the modelled

upward slur, there is a quick and relatively smooth frequency transition between

the two notes; the dip in the frequency seen around 1.12s is again thought to

be unreliable. There are no intermediate frequency steps seen in the modelled

results like those seen in the player results, this could be partially down to the
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Figure 4.11: Lip-slur from D3 to D4, on the wide bore horn by Conn, showing the
radiated pressure signals. Top: Player test Bottom: Modelled results excluding
losses.
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Figure 4.12: Lip-slur from D4 to D3, on the wide bore horn by Conn, showing the
radiated pressure signals. Top: Player test Bottom: Modelled results excluding
losses.
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model input frequency sweep. In the player results presented in Chapter 3 the

mouthpiece pressure signal showed significant steps in the frequency; a simplified

version of this was used as the input to the model which resulted in the resonant

frequency of the lips sweeping linearly between the two notes.

4.4 Conclusions

A simple one dimensional, finite difference, time domain computational model

has been presented and used to model slurred transitions on both the horn and

trumpet; in the case of the horn these results have been compared with player

data which was presented in Chapter 3.

When excited by a linear sine sweep between two notes, and not involving a lip

model, the simulation showed strikingly comparable results to the experimental

forced oscillation results; both the pressure and frequency signals showed very

similar characteristics during the transition to the comparable experimental

results. It has already been shown that in the upper register of the horn the

forced oscillation results compare much more favourably with the player results,

as is true for the model results shown here. These results show that the behaviour

within the instrument, when not concerned with the complex lip model, is

modelled well.

When the model uses simplified player data as an input, incorporates the

lip model but does not include viscothermal losses, the results are not quite as

favourable when compared with the player results. Although the sound output

does sound convincing to the listener, the pressure amplitude and instantaneous

frequency do not show as similar characteristics, to the player results, as possible;

this could be for a number of reasons. The lack of viscothermal losses is thought

to be a major factor as these are important. It is not clear yet if the point at

which the radiated sound readout is taken is of major importance but could be

a contributing factor. Lastly, the lip model parameters are many, and difficult

to define, which could also contribute to the less similar results. However, a new

time domain model has been implemented with encouraging first results of such

transients.
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Chapter 5

Extreme high notes

This chapter will explore the high register of the trumpet, where specialist high

note players can sound notes above the normal playing range. Using a human

player the motion of the player’s lips will be examined, with the use of high speed

filming of the lips under playing conditions. The transfer function between the

mouthpiece and radiation field of the trumpet will also be examined with the

excitation being produced by a forced oscillation source.

5.1 Introduction

The extreme high notes under consideration here are mostly used in jazz trumpet

playing, and generally only possible for highly skilled players. There is much

controversy among players about why and how these notes are able to be sounded

above the expected range. One theory is that the lips of the player are vibrating

at a sub-frequency of the perceived note, and because these notes are only possible

at high dynamic levels that the second harmonic is becoming dominant. Some

players believe that nothing peculiar is happening when playing these high notes,

and that it is simply a progression from the normal playing range that only skilled

players can achieve. The book “A new approach to altissimo trumpet playing”

[Lynch 84] suggests practise methods for achieving extreme high notes, which

include embouchure control, pressure control, air flow control, playing position

and even the player’s attitude towards these notes.

Instrument manufacturers are not oblivious to the fact that players want

to know how to play these notes and if certain instruments are more likely to
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5.1. Introduction

produce these notes. Smith Watkins trumpets are known for having a set of

interchangeable lead pipes that make the instrument better suited to different

types of playing [SmithWatkins 13]. With the correct instrument, leadpipe and

mouthpiece combination a Smith Watkins trumpet is said to be easier to sound

extreme high notes on, as with other specific instruments.

In general, low frequencies reflect strongly from the open end of a trumpet

and it is this process which is responsible for the formation of resonances and

anti-resonances, depending on whether the reflection is in phase or out of phase,

with the forward going wave, for the frequencies under consideration. When the

player buzzes the lips close to the frequency of one of the input impedance peaks

it can create a strong standing wave. Should the lips be buzzed at a frequency half

way between peaks a convincing note will not be produced, but rather the note is

likely to change during the initial transient into a note at one of the nearby peak

frequencies. Players sometimes refer to the frequencies or pitches where they can

play notes as ‘slots’.

It is the cutoff frequency of an instrument that dictates the frequency above

which the sound is radiated freely to the environment, and not reflected back

down the instrument to produce resonances [Fletcher 98]. In brass instruments

the cutoff frequency is primarily determined by the mouth radius. In a simple

model the frequency for which ka = 2, where k = ω/c, gives the cutoff frequency

as:

ω = 2c/a (5.1)

where a is the radius of the horn mouth and c is the speed of sound in air

[Fletcher 98]. In the more complex real case the cutoff frequency also depends on

the shape and flare rate of the bell [Benade 74]. This explains why the number

of strong input impedance peaks in brass instruments is limited. Very high notes

on brass instruments are therefore expected to involve very little of the energy

input to the mouthpiece being reflected back from the bell. This in turn implies

that any note can be sounded by the lips, but only weakly. There will be a region

in between the two extremes in which highly skilled players playing carefully

designed instruments can play extremely high notes in spite of linear acoustics

predicting a very small level of reflection of energy from the bell.
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5.2. Instrument and mouthpiece combination

5.2 Instrument and mouthpiece combination

The trumpet used for this study was a modern instrument by Smith Watkins, and

was coupled with a commercially available Kelly ‘screamer’ mouthpiece, a very

shallow cup mouthpiece, injection moulded from an undyed polycarbonate. This

combination of instrument and mouthpiece is typical of that used by trumpet

players who specialise in playing in the highest register of the instrument.

The acoustic input impedance of this instrument and mouthpiece combination

is shown in Figure 5.1, as measured using the commercially available Brass

Instrument Analysis System [BIAS 13]. This figure shows a notional cut-off

frequency at around the 12th resonant mode (corresponding to the note F6).

Close inspection of the impedance curve above this frequency reveals that there

are small resonances at the frequencies we would expect for the upper modes,

but that these are much less well defined. It is not clear if these small peaks

are sufficient for an experienced player to identify as useful ‘slots’, of if there are

other effects which provide slots for extreme high notes. The 16th resonant mode

(corresponding to the note C7) is known by trumpeters as a ‘super C’, this is

because it is at the upper limit of the trumpet range and therefore not as easy to

play as notes in the lower registers; it is even possible to play some notes higher

than this ‘super C’. Such notes are most commonly used in jazz playing and can

normally only be achieved by very skilled players.

5.3 Transfer function

In this study the transfer function is used to compare the pressure signal measured

at the mouthpiece entrance and the pressure signal radiated from the bell of the

trumpet, in the frequency range of interest. Here we measure the effective transfer

function which is defined as:

Teff = p(out)rms/p(in)rms (5.2)

where p(out)rms is the RMS pressure measured in the radiation field, and p(in)rms

is the RMS pressure measured at the mouthpiece entrance. A full explanation of

theory surrounding the transfer function is presented in Chapter 2, Sections 2.5.6

and 2.5.7.
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Figure 5.1: Input impedance of Smith Watkins trumpet and Kelly ‘screamer’
mouthpiece combination as used by specialist high register players.Top: Full
input impedance Bottom: Zoomed section of input impedance from the top
figure, showing small peaks/ shoulders at the frequencies of the upper resonant
modes.
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5.3.1 Experimental technique

The transfer function setup was driven by a JBL 2446H horn loudspeaker driver.

The input signal was a 10s linear sine sweep, sweeping over the frequencies 900Hz

to 2500Hz. The input pressure was measured using a PCB 106B microphone

which was located in a cylindrical coupler that allowed the mouthpiece to be

connected to the loudspeaker driver. The radiated pressure was measured on axis,

at a distance of one bell diameter from the bell end, by a Bruël and Kjær 4192

pressure-field microphone. Recordings of the microphone signals were made at a

sample rate of 51.2kHz, giving a frequency resolution of 0.1Hz, using a Labview

[National Instruments 13] program, written and developed by Adam Apostoli at

the University of Edinburgh. The resulting pressure signals were split into sections

of 1000 samples for analysis, and the transfer function calculated in MATLAB.

The transfer function of each section of the sweep was calculated by taking the

ratio of the root mean square (RMS) pressures in the radiation field and at the

mouthpiece. A photograph of the experimental setup can be seen in Figure 5.2.

Figure 5.2: Photograph of trumpet transfer function experimental setup, showing
microphones measuring the pressure at the mouthpiece and outside the bell.
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5.3.2 Results
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Figure 5.3: Transfer function between mouthpiece and radiation field and input
impedance for trumpet and mouthpiece combination used by specialist high
register players.

We would expect the dips in the transfer function curve to approximately

match the peaks in the input impedance; this is because the ratio of the radiated

pressure, to the pressure at the mouthpiece entrance, will be smallest when the

forward going wave is reflected strongly at the end of the instrument, and this is

the situation that correspond to peaks in the input impedance. Figure 5.3 shows

the transfer function and input impedance curves plotted together. The frequency

of the transfer function dips are slightly lower than the frequency of the peaks

in the input impedance curve. We can attribute this reduction in frequency to

the effects of the microphone cavity which effectively increases the volume of the

mouthpiece, and possibly temperature differences between measurements. When

examining the input impedance in Section 5.3.1 it was seen that there was a

notional cut-off frequency around the 12th resonant mode; this can also be seen

in the transfer function results but to a lesser extent. The dips in the transfer
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function that can be seen corresponding to the 13th, 14th, 15th, 16th and 17th

resonant modes are more significant than the corresponding peaks in the input

impedance.

Figure 5.4 shows the transfer function results for the trumpet as presented in

Figure 5.3, and show the ratio of the RMS pressure signal in the radiation field

and the RMS pressure measured at the mouthpiece entrance, in the loudspeaker

coupler. Because of the nature of the transfer function the dips observed in

the curve, marked by arrows in the figure, correspond to the resonances of the

instrument. Therefore, it can be seen that the transfer function curve confirms

that there are weak resonances at least up to the 17th mode with this trumpet

and mouthpiece combination.

5.4 Visualisation of the lips

To gain a better understanding of the mechanics of the player’s lips when playing

in this high register, a high speed video camera was used to focus on the lips

through a transparent mouthpiece. As mentioned at the beginning of this chapter,

one theory is that the lips could be vibrating at a different frequency from the

playing frequency that is perceived. Through visualisation of the player’s lips the

frequency at which they are oscillating can be measured quantitatively.

5.4.1 Experimental technique

These experiments were carried out by a professional freelance trumpeter who

specialises in very high note jazz playing.

The mouthpiece used was the same as for the transfer function experiments,

a transparent Kelly ‘screamer’ mouthpiece. To allow better optical access to

the player’s lips some material was machined away from the outside of the

mouthpiece cup, this made the cup walls significantly thinner and so reduced

optical distortion. A photograph of the modified mouthpiece is shown in Figure

5.5. The brass microphone coupler can also be seen in this photograph, located

in the mouthpiece backbore.

The experimental setup is shown in Figure 5.6. The setup is similar to that

described in Section 3.2.2; a high speed camera (Vision Research Inc. Phantom

v4.1 camera), set to take 10,000 frames per second and was focused on the player’s
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Figure 5.4: Transfer function between mouthpiece and radiation field for trumpet
and mouthpiece combination used by specialist high register players. Top: Full
transfer function Bottom: Zoomed section of transfer function from the top
figure, showing dips at the frequencies of the upper resonant modes.
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5.4. Visualisation of the lips

Figure 5.5: Transparent Kelly ‘screamer’ mouthpiece used for visualisation of the
lips, the outside of the mouthpiece cup has had some material machined away to
make the wall of the cup thinner to allow better optical access.

Figure 5.6: Photograph of experimental setup for high speed filming of the
player’s lips, showing microphones in the mouthpiece and outside the bell.
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lips. Necessary additional illumination was provided by a fibre optic ‘cold’ light

source. A 106B PCB Piezotronics dynamic pressure transducer was used to

measure the pressure in the backbore of the mouthpiece. The radiated sound from

the bell was measured using a Bruël and Kjær 4192 pressure-field microphone,

located one bell diameter from the plane of the bell of the trumpet. Signals

from both transducers were fed to a Bruël and Kjær PULSE system for data

acquisition and synchronisation with the high speed video data.

Each frame from the high speed film was ‘binarised’ such that the open area

of the lips can be identified and isolated from the rest of the image. Despite the

inevitable image distortion resulting from a combination of refraction through the

wall of the mouthpiece together with the indirect camera angle, a pixel count of

the open area in each frame provided a qualitative assessment of the movement

of the lips.

5.4.2 Results

The open area of the player’s lips as a function of time, for the 8th and 12th

resonant modes, corresponding to the notes B[5 and F6 respectively, can be seen

in Figure 5.7. It can be seen clearly from these results that the lips are opening

and closing once per cycle and that there are no sub-harmonic or other unusual

phenomena occurring for notes played in the high register.

For the 8th resonant mode the time between adjacent peaks in the lip opening

area is approximately 1.1ms, which relates to a frequency of ∼ 909Hz. The time

between adjacent peaks for the 12th resonant mode is approximately 0.75ms,

which gives a lip opening frequency of ∼ 1333Hz. Both these notes are slightly

flat but there is no disputing that the lips are opening and closing periodically

at the resonant frequency of the modes being sounded by the player.

There is not a result shown here for the trumpets ‘super C’ note, which

corresponds to a B[6, as the player found the experimental setup slightly

uncomfortable and was unable to sound notes any higher than are shown here.

The results in Figure 5.7 do however show notes in the upper end of the trumpet

range.
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Figure 5.7: Open area as a function of time for the 8th and 12th resonant modes of
the trumpet and mouthpiece combination used by specialist high register players.

5.5 Conclusions

This chapter has presented two experimental techniques used to explore the

extreme high notes on the trumpet, above the normal playing range. The transfer

function measurements have shown that there are distinct dips in the results,

which correspond to resonances of the instrument, up to and possibly beyond

2000Hz. The high speed filming of the lips has shown clearly, in the experiments

presented here, that the lips do indeed open and close periodically at the expected

frequency of the note being sounded. The notes played in this section, however,

are not as high as is able to be played on the trumpet, but does imply that the

situation would be similar at a slightly higher frequency.
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Chapter 6

Cylindrical tubes as a simple

brass instrument

This chapter will explore the relative significance of the effects of nonlinear wave

steepening and viscothermal wall losses in brass instruments using the simplified

case of cylindrical tubes. Using a forced oscillation input and cylindrical tubes

of varying diameter, comparable to those of many orchestral brass instruments,

experimental results will be compared with those produced using a computational

simulation based on weakly nonlinear propagation theory.

6.1 Introduction

The bore profile of a brass instrument is one of the major factors in determining

the playing characteristics of a particular instrument. Different instruments that

are pitched in the same sounding key can have very different characteristic timbres

and this is mainly due to the differences in bore profile [Gilbert 07, Myers 07].

The different timbres of these instruments can be less apparent at low dynamic

levels, with instruments in the same sounding key sounding similar. When played

at higher dynamic levels, energy is transferred into the upper harmonics which

leads to a ‘brassy’ sound. The spectral enrichment is caused as the pressure

wave travels along the instrument bore and nonlinear wave steepening occurs

because of the high dynamic levels, which alters the harmonic content of the

sound [Beauchamp 80, Beauchamp 82, Hirschberg 96]. However, the extent of

spectral enrichment can vary with bore profile, hence causing instruments to
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have significantly different characteristic timbres. Instruments, such as trumpets

and trombones, which have a large proportion of cylindrical tubing, show more

spectral enrichment than instruments such as euphoniums and flugelhorns, whose

bore profile expands steadily throughout a significant proportion of the tubing.

Nonlinear wave steepening is not the only factor affecting the harmonic

content in brass instruments while being played. Viscothermal losses in the

boundary layer at the tube wall act to dissipate energy at all frequencies but are

frequency dependent, and therefore act to dissipate the high frequency energy

more than the low frequencies. This means that the high frequency components

resulting from the nonlinear wave steepening will lose more energy because of

the viscothermal losses. Although the boundary layer thickness is typically very

small it will have a different effect in different diameter tubes. The viscothermal

wall losses are likely to have a larger effect in small diameter tubes than in larger

diameter tubes because the boundary layer occupies a larger percentage of the

internal area of the tube [Fletcher 98]. The theory surrounding this topic is

discussed in Chapter 2, Section 2.5

6.2 Experimental Method

The experimental approach taken in this study was to use a specifically chosen

set of cylindrical tubes, whose lengths and diameters are typical of those found

in trombones. To these tubes a sine wave of fixed frequency and varying

amplitude was injected; and with the use of internal microphones and an external

microphone, the way in which the transfer function and spectral centroid vary as

the amplitude is increased was explored.

6.2.1 Cylindrical Tubes

All tests were carried out in an anechoic chamber. Five cylindrical tubes were

used, each with length 2.96m and with bore diameters 6mm, 8mm, 10mm, 12mm

and 14mm. These diameters were chosen as 14mm is a typical slide bore diameter

for a modern orchestral tenor trombone, and 10mm slide diameters can be found

in some nineteenth-century French trombones. While the 6mm diameter tube

is unrealistically narrow for a trombone, it was chosen to explore the effect of

viscothermal losses in a tube where they are very significant, see Chapter 2,
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Section 2.5.6. All five tubes were stainless steel with a wall thickness of 2mm,

manufactured to ASTM A269/A213, and with uniform, semi-polished surface

finish on the inside wall. The tubes were divided into 3 sections to accommodate

housing for various microphones to allow the pressure of the wave inside the tube

to be measured at different points along the tube length. The sectioning of the

tubes is shown in the schematic Figure 6.1.

296cm

5cm 142cm 149cm

Figure 6.1: Schematic showing the sectioning of all 5 tubes.

6.2.2 Experimental Setup

A 106B PCB Piezotronics dynamic pressure transducer was used to measure the

pressure at the entrance to the tube. To measure the pressure within the tube,

Bruël and Kjær 4938 1/4-inch pressure-field microphones were used; these were

located a short distance from the entrance - 0.05m in, and close to the mid point

of the tube - 1.47m in. The radiated sound was measured using a Bruël and Kjær

4145 1-inch free-field microphone at a distance of 0.2m on axis from the exit of

the tube.

The experimental setup and placement of the four microphones is shown in

Figure 6.2.

The 1/4-inch microphones, measuring the pressure signal within the tube,

were housed in brass couplers as shown in Figure 6.3. These couplers allow the

microphones to be inserted so that the diaphragm is nominally flush with the

inner tube wall and causes as little perturbation to the wall surface as possible.

To verify that the acoustic reflections were not significant in the tube due to these

couplers, the Brass Instrument Analysis System [BIAS 13] was used to gain an

input impulse response which is shown in Figure 6.4. This figure shows that the

only reflection in the tube comes from the termination at 2.96m, and that the

joints between sections are continuous and do not introduce any other points of

reflection.

The tubes were excited by a JBL 2446H compression driver producing a sine

wave input signal. The input sine wave pressure amplitude was increased from
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amplifier, signal 

conditioning,

PC data acquisition

test tube

loud 

speaker 

driver

¼” microphones 

mic. for 

radiated sound

anechoic chamber

PCB 

pressure transducer 

1 2 3 4

Figure 6.2: Schematic of cylindrical tubes experimental setup. Pressure measured
at the four labelled locations 1-4, the distances between microphone positions can
be seen in Figure 6.1.

cylindrical tube

brass coupler

50 mm

1/4" microphone

Figure 6.3: Schematic of brass coupler design, housing the 1/4-inch microphones.
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reflection at 2.96m

Figure 6.4: Input impulse response curve for the 10mm diameter tube showing a
round trip time corresponding to a tube length of 2.96m.

zero to a maximum value, determined by the limit at which distortion by the

loudspeaker could be observed in the microphone signal. The sine wave amplitude

sweeps were each of 5s duration and the frequency of the sweep was chosen for

each tube independently.

6.2.3 Data acquisition

A computer using a Labview [National Instruments 13] program, written and

developed by Adam Apostoli at the University of Edinburgh, was used for the

creation of the input signal for the loudspeaker and also data acquisition. The

program allows the user to determine the type of sweep produced - amplitude

or frequency, the sampling frequency, duration of signal, and frequency. The

sampling frequency used was 100,000Hz. The four microphone signals were passed

through appropriate signal conditioning amplifiers and then taken as inputs to the

computer and Labview program which simultaneously recorded the 4 microphone

signals.
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6.2.4 Choice of frequency of amplitude sweep

The frequency at which the amplitude sweeps were conducted was chosen to

correspond to a minima of the transfer function, T 14 (the ratio between the root

mean square [RMS] pressure measured by microphone 4, in the radiated field

20cm from the tube exit on axis, and the RMS pressure measured by microphone

1 at the tube entrance). A minimum in T 14 occurs when the wave reflected from

the open end arrives at the input in phase with the forward going wave and hence

lies approximately on a resonant frequency of the tube - the 13th resonant mode

was chosen since this was at a pitch which was (just) playable on a trombone, but

sufficiently high for the speaker driver to sound at an adequately high dynamic

level. The pressure recorded by microphone 1, P1, is the sum of the forward and

backward going waves at this measurement point. At a resonant mode of the

tube, and hence a minimum of T 14, P1 will be approximately twice the pressure

amplitude of the forward going waves, P+. This means that for a given P1, there

will be a constant P+ at the input for all of the tubes. If it were the case that

the measurement frequency was not tuned to a resonant mode of the individual

tubes, and each measurement was conducted at the same frequency it is unlikely

that for a given P1 the forward and backward going waves will be exactly in

phase at the entrance to the tube. When the forward and backward going waves

are not in phase at the microphone position it is not known what the pressure

amplitude of P+ is. This of course is not strictly true - both the forward and

backward going wave, P+ and P− respectively, are subject to the viscothermal

losses within the tube and therefore P1 will not be exactly twice P+. However,

using a frequency corresponding to a minimum of T 14 is the closest to this ideal

situation as is possible. In the case of comparing the experimental results with

the simulation results, it is not critical that the values of P+ are known as the

simulation produces a value of P1, i.e. P1 = P+ + P−, which can be compared

directly to the experimental values of P1.

Figure 6.5 shows T 14 over the frequency range 700-800Hz for the 14mm

diameter tube with an air temperature of 15 ◦C. It can be seen here that

the minima and maxima are not uniformly ‘sharp’; the maxima peaks show a

much sharper point than the shallow minima troughs. This reinforces why it is

advantageous to use the T 14 minima frequencies as a small shift from the exact

minima will have less of an effect on the T 14 results than using a frequency that
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Figure 6.5: Transfer function T 14 over frequency range 700-800Hz, showing the
minima and maxima. 14mm diameter tube, air temperature of 15 ◦C

is near the maxima or in between the minima and maxima and hence on the

steepest part of the curve. The two minima shown in Figure 6.5 correspond to

the 12th and 13th resonant modes of the 14mm diameter tube.

Due to the tubes having different end correction conditions the frequency

of the 13th resonant mode is slightly different for each tube, as shown in Table

6.1. The corresponding T 14 maxima frequencies for the maxima preceding the

minima frequencies shown in Table 6.1 are shown in Table 6.2. As it is difficult

to measure the exact minima frequency for any chosen resonant mode there is an

associated error of ±3Hz on the stated minima frequencies.
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Tube
Diameter

Frequency (Hz)

Experiment Simulation

6mm 762 760

8mm 767 762

10mm 765 764

12mm 770 766

14mm 770 766

Table 6.1: Transfer function T 14 minima frequencies for all five different diameter
tubes, with associated ±3Hz error.

Tube
Diameter

Frequency (Hz)

Experiment Simulation

6mm 734 734

8mm 738 738

10mm 737 740

12mm 742 740

14mm 742 740

Table 6.2: Transfer function T 14 maxima frequencies for all five different diameter
tubes, with associated ±3Hz error.
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6.2.5 Tube Entrance Conditions

Figure 6.6 shows the plastic coupler design that was used to couple the tubes

to the loudspeaker, along with housing the PCB microphone for measuring the

pressure signal at the entrance to the tube. It was assumed that the plastic

coupler connected to the loudspeaker has little effect on the input signal and to

verify this a small experiment was carried out.

PCB microphone

clyindrical tube

loudspeaker

plastic coupler

d

Figure 6.6: Schematic of plastic loudspeaker coupler design, housing the PCB
microphone at the tube entrance. Insertion depth shown as d.

The 4cm section of tubing at the beginning of the tube can have a varied

insertion depth into the plastic coupler - this insertion depth was maintained, as

much as was possible, throughout all experiments but for verification the effect

of different insertions was investigated. By measuring the distance between the

outside of the plastic coupler and the beginning of the brass coupler, while the

4cm section was inserted, the length of the tube section that was inside the plastic

coupler was calculated and this was the insertion depth denoted henceforth.

Figure 6.7 shows results for the 14mm diameter tube of the RMS pressure

signals as recorded by microphone 1, in the plastic coupler at the entrance to the

tube, at a chosen of amplitude of 782Hz which corresponds to neither a minima

or maxima of T 14. The RMS pressure signals, at this point, differ in amplitude
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Figure 6.7: 14mm diameter tube P1 RMS during an amplitude sweep at 782Hz.
Different insertions depths of the tube into the loudspeaker coupler.

only very slightly with insertion depth and show an increase as the insertion depth

becomes smaller.

If there was no change in RMS pressure amplitude between microphones 1

and 2 we would see that the ratio of these two signals, T 12, would be equal to

1. The transfer function results between microphones 1 and 2, T 12, are shown

in Figure 6.8. It can be seen that for varying insertion depths T 12 has little

variation, at only around 1% difference. The absolute values of T 12 are between

approximately 0.973 and 0.990, showing that the RMS pressure measured at

microphone 2 is only very slightly lower than that measured at microphone 1 for

all insertion depths and hence that the use of the plastic coupler does not make

a large difference to the pressure signal entering the tube.
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Figure 6.8: 14mm diameter tube transfer function T 12 during an amplitude sweep
at 782Hz. Different insertion depths of the tube into the loudspeaker coupler.

6.2.6 Radiation Conditions

It is reassuring to find that the loudspeaker coupler has little effect on the input

signal of the system but this is not the case with all the variable factors in

the experimental setup. It was found that the orientation of microphone 4, the

microphone placed in the radiation field 20cm from the termination of the tube,

had a larger effect on the results gained from the setup. Figure 6.9 shows the

difference in the T 14 results, for the 14mm diameter tube with the radiated

microphone on axis and approximately 10 degrees off axis, as being around 6%

higher when the microphone is off axis. It was endeavored for the placement of

this microphone to be kept as constant as possible between measurements, in

terms of both distance from the termination of the tube and angle, so that it

remained on axis at all times.
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Figure 6.9: 14mm diameter tube transfer function T 14 during an amplitude
sweep at 760Hz. Radiated microphone 4 on axis and 10 degrees off axis.

6.2.7 Temperature Effects

The air temperature in the anechoic chamber was also found to be a vital factor

in gaining consistency between measurements. To investigate the quantitative

effects of temperature on the measured transfer function, a series of measurements

were carried out at a range of ambient temperatures. In order to carry out

measurements at a consistent temperature, standard lamps containing high

wattage bulbs were used to increase the air temperature gradually to a chosen

value; this was done slowly to ensure the temperature of the air inside the

cylindrical tube was increased as well as the surrounding air. After the

experimental setup had been assembled and the tube positioned within the setup,

it was left to acclimatise for an hour as the tubes themselves could become very

warm after being handled for several minutes. Figure 6.10 shows the effect on T 14

due to air temperature differences in experimental measurements. The variation

in the experimental transfer function at the highest input pressure amplitude

is around 10%, with T 14 having a higher value for the lowest temperature of

15 ◦C. The variation in T 14 is relatively small but still significant when aiming
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Figure 6.10: 14mm diameter tube transfer function T 14 during an amplitude
sweep at frequencies corresponding to a minima of the transfer function, at
varying air temperatures.

to compare experimental results with simulation and hence all experimental

measurements were carried out at 15 ◦C. It is estimated that the error in the

temperature for any given measurement is ±0.5 degrees, which will give an

approximate percentage error of 1.25% in the transfer function results.

6.2.8 Experimental Errors

It has been shown in the previous sections that the experimental setup and

technique used for this work can be very sensitive to variable factors; it is for this

reason that so much care has been taken in refining the experimental technique,

and hence repeatability of the measurements.

In the short quantitative assessment of the variable factors in the experimental

setup one of the most significant errors was shown to be the positioning of the

microphone in the radiation field. It should be noted that the technique used to

gain repeatable alignment of this microphone was simply a sheet of paper rolled

lengthways, with a mark indicating 20cm along its length. This sheet of paper
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was then inserted into the end of the tube and the microphone aligned on axis,

20cm from the tube termination, using the rolled paper as a guide. The error

associated with a 10 degree, off axis, movement of the radiated microphone was

found to be 6%; this can hence be taken as the maximum error bound for this

work as a 10 degree movement of the microphone would be immediately obvious

to the experimentalist.

It can therefore be stated that the experimental error in this work will be

significantly less than 6%, with this value being the outermost error bound, and

that as the experimental technique was refined it was increasingly easy to ensure

repeatability from the given setup.

6.3 Computational Simulation

The numerical simulation used was developed by Joël Gilbert and is detailed in

[Gilbert 08b]. It is a frequency-domain numerical model which can be used to

model the sound production and brassiness of a brass instrument. This model was

not the first of its kind; numerical simulation programs were developed in both the

time domain [Msallam 00, Vergez 00] and frequency domain [Thompson 01]; these

previous models made some assumptions, such as modelling the wave steepening

in only part of the bore or not taking into account the nonlinear wave propagation

of the backward going wave. The numerical simulation used here is based on the

generalised Burgers’ equations relating to weakly nonlinear wave propagation in

nonuniform ducts.

Assuming a one dimensional flow, within a nonuniform duct, in a dissipative

viscothermal homogeneous fluid and using weakly nonlinear propagation theory,

the first-order nonlinear differential twin equations that are the generalised

Burgers’ equation for the forward and backward going wave are produced:

∂q+

∂σ
− q+

∂q+

∂θ+

+ q+
∂ln(D(σ)/D(0))

∂σ
= +

1

Γ

∂2q+

∂θ2
+

− T

ε

∂1/2q+

∂θ
1/2
+

(6.1)

∂q−
∂σ

+ q−
∂q−
∂θ−
− q−

∂ln(D(σ)/D(0))

∂σ
= − 1

Γ

∂2q−
∂θ2
−
− T

ε

∂1/2q−

∂θ
1/2
−

(6.2)

where Γ, the Gold’berg number, is a measure of how strongly nonlinear effects

will accumulate before absorption losses eventually cause the acoustic signal to
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decay away [Kinsler 00]. Equations 6.1 and 6.2 use dimensionless variables σ (a

slow geometric scale σ = (γ+1)/2Mx, where γ is the specific heat ratio, M a

Mach number, and x a dimensionless geometric scale), θ+ and θ− (dimensionless

delayed time scales), and q+ and q− (forward and backward variables). These

equations also contain a second term on the right-hand side that is determined

by the dimensionless number T/ε, which is a measure of the strength of

nonlinearity relative to the wall dissipation; this term arises as a consequence

of the viscothermal boundary layer attenuation on a plane wave propagating in

a duct with rigid walls.

Equations 6.1 and 6.2 have no analytical known solutions, and therefore the

solutions calculated numerically in the frequency domain. The traveling wave

q+(σ, θ) is considered:

q+(σ, θ) =
∞∑
n=1

[an(σ) sinnθ + bn(σ) cosnθ] (6.3)

The nonlinear term from the Burgers’ Equations, 6.1 and 6.2, becomes a

Fourier series which gives the following, for each harmonic component n, when

each term of the Fourier series is equalised:

∂an
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=n
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2
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(6.5)

These equations are solved numerically in the simulation program, using a

spatial finite difference method, with the boundary condition q+(0, θ), a time
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periodic function. The classical Euler method is used at first order, and correction

is performed using the Adams Moulton second order method.

A monopole radiation approximation is used to predict the radiation from

the output of the tube/instrument. The volume velocity spectrum Qout at

the termination of the tube is estimated by multiplying the output acoustic

velocity spectrum by the terminating surface area. The radiated pressure, Prad,

is calculated using

Prad =
ρ

4πr
jωQoute

−jkr (6.6)

where ρ is the density of air and r is the distance from the end of the tube. This

uses the low frequency approximation for a monopole source having a volume

strength equal to Qout.

The simulation program requires a simple bore profile as an input, which in

the case of a cylindrical tube was simply the length and internal diameter. The

program then creates a very accurate bore profile with points at 0.5mm intervals.

Two input files were also created with the parameters of the input signal,

one corresponding to the conditions at the lowest amplitude of the crescendo,

pp, and the other corresponding to the conditions at the highest amplitude,

ff. These files contain the fundamental frequency, number of harmonics, and

the pressure amplitude and phase for each harmonic. Other input parameters

include temperature and distance to radiated measurement point. The simulation

program was set to have measurement points at the same positions as the

microphone positions in the experimental setup; in turn the RMS pressure and

spectral centroid data is returned at each of these points.

6.4 Transfer Function

The transfer function between the input and the output of an instrument, or

tube, has been shown to be a value that is particularly responsive to nonlinear

effects, as far back as the work conducted by Beauchamp [Beauchamp 80]. In this

section the results of a further exploration of the transfer function at different

dynamic levels for the case of a range of simple cylindrical tubes is presented.
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6.4. Transfer Function

6.4.1 Entrance transfer function

T 12, the transfer function between the microphone at the entrance to the tube

and the microphone 5cm from the entrance is shown in Figure 6.11 for the

experimental results.
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Figure 6.11: Experimental transfer function T 12 during an amplitude sweep at
frequencies corresponding to a minima of the transfer function. Five tubes with
diameters 6mm, 8mm, 10mm, 12mm, and 14mm.

This figure shows some interesting details about the five tubes; it can be seen

that the 6mm diameter tube has a much higher T 12 result than the other 4 tubes,

implying that the difference in RMS pressure signals for the 6mm tube in the first

5cm is much less than for the other tubes. The value of T 12 for the 6mm tube

is essentially equal to 1 which signifies that the two pressure signals are basically

identical. The 8mm diameter tube shows a T 12 of approximately 0.88, and the

10mm, 12mm, and 14mm results are all around 0.8.

The wavelength, λ, for each tube, at the T 14 minima frequency, is approxi-

mately 44cm and hence 1
4
λ is approximately 11cm. This means that the distance

between adjacent nodes and antinodes in the standing wave will be around 11cm.

The distance between the microphones that are being considered in the case of
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Figure 6.12: Simulated transfer function T 12 during an amplitude sweep at
frequencies corresponding to a minima of the transfer function. Five tubes with
diameters 6mm, 8mm, 10mm, 12mm, and 14mm. Noting that the 10mm T12
result lies at exactly the same point as the 12mm result, and hence is not visible
on the plot.

T 12 is roughly half of this 1
4
λ and hence there could be a substantial difference in

the absolute pressure amplitude of the standing wave between the two microphone

positions. Although the losses are more apparent in the smaller diameter tubes,

it is the 6mm diameter tube that shows no decrease in RMS pressure after 5cm.

This could be understood as the losses acting on the propagating wave to the

extent that the difference between the maximum and minimum (the antinodes

and nodes) of the pressure wave is small and therefore over the 5cm distance

there may not be a large difference in RMS pressure. Indeed the same effect

is seen in the simulated T 12 results, as shown in Figure 6.12. Although all the

transfer function results are lower here than those seen in the experimental results

a similar effect can be seen; the 6mm diameter tube shows the highest T 12 result

at around 0.86, the 8mm diameter tube is slightly lower at around 0.79 and the

three largest tube diameters are grouped between 0.72 and 0.75.
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6.4. Transfer Function

6.4.2 Radiated transfer function

Figure 6.13 shows experiment and simulation results, for the five tube diameters

used, of the transfer function T 14, between the microphone at the entrance to

the tube and the microphone in the radiation field.
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Student Version of MATLABFigure 6.13: Transfer function T 14 during an amplitude sweep at frequencies
corresponding to a minima of the transfer function. Five tubes with diameters
6mm, 8mm, 10mm, 12mm, and 14mm.

There is a clear increase in T 14 with bore diameter increase from the 6mm to

14mm diameter tubes. This increase with diameter is in line with expectations,

as the increase in tube diameter increases the surface area at the end of the tube

and hence the volume velocity and associated radiated pressure will be larger. We

also know that the viscothermal wall losses become less significant in the larger

tubes, and therefore in the smaller diameter tubes there will be more dissipation

of energy as the sound wave propagates along the tube before some of this wave

is radiated at the end of tube. The smallest diameter tube, 6mm, experiences

almost no change in transfer function T 14 with amplitude, which is what we

would expect if we were to assume the viscothermal losses were independent of
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6.4. Transfer Function

amplitude and that there was no nonlinear distortion. As the diameter of the

tubes increase, T 14 increases more with increasing pressure amplitude, with this

being most evident for the 14mm diameter tube. This behaviour of T 14 can be

partly understood as a consequence of the nonlinear steepening that has occurred

within the tubes and partly because of the smaller viscothermal loss coefficient

for the larger diameter tubes. The nonlinear wave steepening means that the

radiated pressure wave has more high frequency components and because these

high frequency components are more efficiently radiated from the end of the tube.

At the highest input pressure amplitudes it can be seen that the experimental

results deviate more from the simulation results; because the transfer function is

the ratio of two pressure signals this shows that the radiated pressure P4 has a

smaller value, at the highest amplitudes, in the simulation than in the experiment.

The simulation results are qualitatively similar to the experimental results but

are not entirely quantitatively similar across all five tubes. The experimental

T 14 results are all larger than the simulated results, with the exception of the

6mm diameter tube, and this discrepancy increases with tube diameter. The

quantitative difference between simulation and experiment is most marked for

the 14mm diameter tube with the simulation results being around 10% lower

than experiment. This difference could perhaps be attributed to the monopole

radiation approximation made in the numerical simulation being an oversimplified

approximation of the realistic radiation from the tubes.

The monopole radiation model predicts that there is a uniform distribution of

sound energy in all directions emanating from the termination of the tube. This

approximation is applicable for low frequency components, but as the frequency

increases to the point where this approximation ceases to be true, more energy

is expected to be concentrated into the central radiation lobe, where microphone

4 is placed.

6.4.3 Internal transfer function

The placement of microphones 2 and 3 within the tube length allowed the

evolution of the nonlinear distortion and viscothermal losses to be explored at

different points along the wave propagation. The weakly nonlinear propagation

theory assumes that there is no local nonlinear interaction between the forward

and backward going waves, but that the pressures measured by the microphones
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are the sum of these two waves.
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Figure 6.14: Transfer function T 23 at 1000Pa RMS input pressure at frequencies
corresponding to a minima of the transfer function plotted against the five tube
diameters 6mm, 8mm, 10mm, 12mm, and 14mm.

Figure 6.14 shows measured and simulated results for T 23 (the ratio between

the RMS pressure measured by microphone 3, roughly in the middle of the tube

- 147cm from the tube entrance, and the RMS pressure measured by microphone

2, 5cm from the tube entrance). The T 23 results are essentially independent of

input pressure amplitude so are plotted here against tube diameter. The absolute

values of the internal transfer function T 23 depend on the relative phases of the

forward and backward going waves at the microphone position. The evaluation

of T 23 allows us to examine purely the effects of the nonlinear wave steepening

and the viscothermal losses without the added complication of the radiation from

the end of the tube. So from these results we can see that excluding the slightly

crude radiation approximation in the simulation the results are broadly in accord

with the experimental results but still between 15-30% higher. This difference

between simulation and experiment suggests that the treatment of the losses in
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the simulation is not fully in accord with what is observed experimentally; the

simulation appears to be under predicting the amount of losses in the system.

The trends, with regard to tube diameter, are slightly different between the two

curves - the simulation results increase with tube diameter almost steadily, with

the exception of the 12mm diameter tube showing a slightly lower value for T 23.

However, the experimental results increase with a peak at the 10mm diameter

tube and then decrease slightly with the two largest diameter tubes.

When considering the internal transfer function T 23, it may be less complex

than the case where the radiation field must be taken into account, but a number

of effects must still be evaluated. At measurement point 2, 5cm from the entrance

of the tube, the pressure wave has already propagated a small distance and

will therefore have already been slightly distorted and have been affected by

the viscothermal losses. However, we assume that these effects will have had

a minimal effect at this point. As the forward going wave propagates further

down the tube to measurement point 3, 147cm from the entrance, it will have

became distorted due to the nonlinear distortion. The nonlinear distortion acts

in such a way to transfer energy into the upper harmonics. The viscothermal

losses are however frequency dependent, meaning that they act to diminish the

energy of the higher harmonic content more so than the lower frequencies. As

the forward going wave propagates further down the tube it will lose energy

due to the viscothermal wall losses as it travels. The pressure measured at the

measurement points, in both the experiment and simulation, is a summation of

the forward and backward going wave pressures at that point. The forward going

wave has propagated to the end of the tube and at the termination some fraction

of this wave is reflected and becomes the backward going wave. The backward

going wave will have already been subject to the viscothermal wall losses as it

propagated to the end of the tube as the forward going wave, and hence, will

have lost energy. This smaller amplitude backward going wave will be subject to

the same wall losses as it propagates back toward the entrance of the tube and

hence lose even more energy. It can be seen in Figure 6.15 the effect the losses

have on the transfer function T 13, as predicted by the simulation program.

It is clear that the inclusion of the viscothermal losses has a very significant

effect of the pressure amplitude of the propagating wave. In the case where there

are no wall losses in the system, and the same extent of nonlinear distortion, T 13
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Figure 6.15: Simulated transfer function T 13 of the 12mm diameter tube showing
results including viscothermal losses on both the forward and backward going
wave, only the backward going wave and no losses at all.

is approximately 0.85. Whereas, when viscothermal wall losses act on both the

forward and backward going wave T 13 has, unsurprisingly, a much lower value of

around 0.6. What is perhaps more interesting is the case where the viscothermal

losses are apparent in the forward going wave propagation but neglected from the

backward going wave. In this case T 13 lies around 0.65, showing that the wall

losses on the backward going wave have a much smaller effect on the total pressure

of the wave than those on the forward going wave, as the pressure amplitude of

this wave has already been significantly diminished as it propagated from the

tube entrance towards the end of the tube.

6.5 Spectral Centroid

The program used to anaylse the evolution of the measured spectral centroid was

developed by Joël Gilbert and is discussed in [Gilbert 07]. The program takes

pressure signals from the microphones and splits these signals into overlapping
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segments of 4096 samples each. These segments are each analysed with a discrete

Fourier transform and the mean value of the instantaneous fundamental frequency

and the RMS pressure signals for each are estimated. The spectral centroid (as

defined in [Beauchamp 82]) is calculated using Equation 6.7

SC =

∑
n nPn∑
n Pn

(6.7)

where Pn is the amplitude of the nth harmonic of the signal.

6.5.1 Input Signal

It was found in the experimental results for each tube, at the highest amplitudes,

that the input signal was not a perfectly sinusoidal signal and that there were very

small, 2nd and 3rd harmonic components present - as shown in Figure 6.16 for the

12mm diameter tube. This figure shows the harmonic components as calculated

in MATLAB [Mathworks 13] using a fast fourier transform (FFT). Because we

are interested in the harmonic content of the signal at the highest amplitude, a

section is taken from the end of the signal, this consisted of the last 4096 samples.

This section of the signal was re-sampled to a sample rate which was an integer

multiple of the frequency of the amplitude sweep, and a rectangular window used.

The section of the signal was also zero padded to give a finer frequency resolution

in the FFT, this is what produces the side lobes in Figure 6.16.

These small harmonics are inevitable as such a setup as the measured signal

is the sum of the forward and backward going waves; the backward going wave

returns to the measurement point with a definite degree of nonlinear distortion

and hence when added to the forward going wave will result in a slightly distorted

pressure wave. The program used to calculate the spectral centroid allows a noise-

floor to be defined; all frequency components with amplitude less than this defined

value are discounted from the spectral centroid calculation.

The calculation of the spectral centroid is very dependent on distinguishing

the harmonics that you wish to identify from the background noise. If too many

components are taken into account, it is possible that the calculated spectral

centroid will not be valid; it will be taking into account some degree of the

background noise and hence changing the final result. Each experimental signal

was assessed individually and a value for the noise floor determined for each.
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6.5. Spectral Centroid

The value chosen was determined by examining the spectrogram produced by

the program, and finding the amplitude of smallest harmonic component that

was identifiable above the background noise, this was done by inspection.

Although very small in amplitude relative to the first harmonic these higher

harmonics do affect the spectral centroid, as can be seen in Figure 6.17 which

shows both the far field, SC 4, and internal, SC 3, spectral centroid results for the

measured data, and the simulation with and without the extra harmonics. In both

the internal and far field cases, the spectral centroid at the highest input pressure

values are slightly higher for the simulation results which include the extra input

harmonics, than the pure sine input simulation results. The phase data for each

of the harmonics in the measured data is also included in the simulated results;

both the amplitude and phase data should be included to provide as close an

input signal to the simulation, as to that used in the experimental setup. The

phase information of the input harmonics is important for the simulation; it will

determine how the these harmonic components develop with increasing input

pressure amplitude and how the resulting waveform in the tube will develop.

At the highest input pressure amplitude values there are a large number of

harmonics present in the far field signal. As the pressure wave propagates down

the tube it is becoming increasingly distorted and the harmonic content of the

signal is changing. It is therefore important that when evaluating the spectral

centroid of a signal with a much higher number of high frequency components,

all significant components are taken into account. The number of harmonics used

in the calculation of the spectral centroid must be chosen both in the simulation

program and when analysing the experimental data. Figure 6.18 shows far field

spectral centroid, SC 4, results for both simulation and experiment using the

12mm diameter tube at the T 14 minimum frequency. The importance of the small

amplitude, highest harmonics, on the spectral centroid results can be seen; there

is up to a 15% difference, at the highest input pressures, between calculations of

the spectral centroid using 10 and 15 harmonics.

15 harmonics were used for all calculations of the spectral centroid for both

simulation and measured results, as at this point it was beginning to be difficult

to distinguish the harmonic peaks from the noise in the experimental results.

All results hereafter have been calculated taking into account 15 harmonics

and have the appropriate extra harmonics in the simulation input signal at the
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Figure 6.16: 12mm diameter tube measured input signal spectrum at highest
input amplitude, showing harmonics above the fundamental. Bottom: Zoomed
section.
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Figure 6.17: 12mm diameter tube spectral centroid during an amplitude sweep
at 766Hz. Simulation with and without additional input harmonics. Top: Far
field Bottom: Internal
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Figure 6.18: 12mm diameter tube far field spectral centroid at 766Hz. Showing
experimental and simulation results using 10 and 15 harmonics in the spectral
centroid calculation.

highest amplitudes.

6.5.2 Results

The spectral centroid measured in the far field, SC 4, can be seen in Figure 6.19 for

the 10mm diameter tube, which shows both the measured and simulated results.

The measured spectral centroid has a maximum value of approximately 3.8 at

the highest input pressure amplitude. However, the simulated spectral centroid

result has a significantly lower value, of around 2.7, at the highest input pressure

value. This result is typical of all the different diameter tubes and the far field

spectral centroid, SC 4, results for each of the tubes can be seen in Appendix B.

Figure 6.20 again shows both the experimental and simulation results at the

transfer function minima frequencies for the far field spectral centroid, plotted

in such a way as to see the dependence of SC 4 on tube diameter. It can be

seen that the simulated SC 4 results (bottom section of Figure 6.20) show little
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Figure 6.19: Far field spectral centroid of the 10mm diameter tube during
an amplitude sweep at frequencies corresponding to a minima of the transfer
function, showing experiment and simulation results.

dependence on tube diameter at the highest input pressure amplitudes. However,

the measured results show much greater variation with diameter. The measured

results show the 10mm diameter tube as having the highest SC 4 value, and a

sharp drop in the spectral centroid for the 8mm diameter. There is also a decrease

in SC 4 for the 12mm and 14mm diameter tubes.

As shown in Figure 6.19 there is a significant difference between measured and

simulated results, with absolute values of the simulated spectral centroid being

lower by as much as 30%. The difference between simulated and experimental

results might be attributed, at least in part, to the fact that for larger tube

diameters the assumption of a monopole radiation source at the tube exit becomes

less applicable for the higher frequency components. This does not however

explain the similar proportion of difference in the smaller diameter tubes.

To eliminate possible effects resulting from the monopole radiation assump-

tion, the spectral centroid near the mid point of the tube (microphone 3) was

also investigated and the corresponding 10mm diameter tube results are shown
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Figure 6.20: Far field spectral centroid of the five tubes (6mm, 8mm,
10mm, 12mm, and 14mm diameter) during an amplitude sweep at frequencies
corresponding to a minima of the transfer function. Top: Experiment Bottom:
Simulation
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Figure 6.21: Internal spectral centroid of the 10mm diameter tube during
an amplitude sweep at frequencies corresponding to a minima of the transfer
function, showing experiment and simulation results.

in Figure 6.21. It can be seen here that the measured and simulated SC 3 results

are significantly more consistent than those of SC 4 that were shown in Figure

6.19. Both the measured and simulated spectral centroid results have a maximum

between 1.3 and 1.35 for the highest input pressure amplitudes. Again the results

for each individual tube can be seen in Appendix B.

Figure 6.22 shows the dependence of SC 3 on tube diameter. There is much

less variation with diameter for the internal spectral centroid results than the far

field. The maximum spectral centroid for all measured and simulated results is

shown to be approximately 1.3, except the measured 6mm diameter tube result,

which is slightly higher. The 6mm tube did however show slightly anomalous

results in the transfer function.

In both Figures 6.20 and 6.22, showing the internal and far field spectral

centroid results, there is no discernable trend relating the spectral centroid to

tube diameter. This could be attributed to the small phase differences that occur

from having tuned the measurement frequencies to be at transfer function minima.
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Figure 6.22: Internal spectral centroid of the five tubes (6mm, 8mm,
10mm, 12mm, and 14mm diameter) during an amplitude sweep at frequencies
corresponding to a minima of the transfer function. Top: Experiment Bottom:
Simulation
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To eliminate these possible phase differences simulations were carried out using a

pure sinusoidal input signal at a constant frequency of 764Hz. A larger range of

tube diameters than measured experimentally was chosen to explore the overall

effect on spectral centroid of varying diameter. Figure 6.23 shows simulated

results of the spectral centroid calculated in the radiation field, 20cm from the

tube exit on axis, assuming monopole radiation.
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Figure 6.23: Simulated far field spectral centroid of tubes ranging in diameter
from 4 - 16mm during an amplitude sweep at 764Hz.

It can be seen here that for high amplitude input signals there is a small

but significant increase in the value of the spectral centroid with decreasing tube

diameter, to a maximum point at 9 - 10mm diameter. The spectral centroid then

falls off rapidly as the tube diameter decreased further. We might expect that for

the same pressure amplitude at the input of the tube, and neglecting losses, the

nonlinear distortion should be independent of tube diameter and hence produce

similar spectral centroid values. However, this is not what is seen here.

This can be explained by the fact that, for larger diameter tubes, where

wall losses are very small, for a constant input pressure at a transfer function
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minima, the forward going wave and backward going wave will have similar

amplitudes (and noting that the measured input pressure, P1, is the sum of

the forward and backward going wave). As the tube diameter decreases, the

wall losses increase and thus the contribution of the backward going wave to the

input pressure is reduced. An increase in the amplitude of the forward going

wave is then required to achieve a given value of P1, increasing the level of

nonlinear distortion and hence increasing spectral centroid seen in Figure 6.23,

reaching a maximum for the 9mm diameter tube. As tube size continues to

decrease, the effect of viscothermal losses becomes the dominant effect and their

damping of high frequency components is more prominent than the addition of

these components due to nonlinear distortion.

In relation to real brass instruments, this could be why brass instruments are

manufactured to have bore diameters in this range - any smaller than this and the

wall losses take over, any larger and the amount of energy needed by the player

to produce the same output pressure is too much because of the bigger diameter.

6.6 Conclusions

This chapter presented an experimental setup using cylindrical tubes as simple

brass instruments, with a forced oscillation input, to explore the relative

significance of viscothermal losses and nonlinear wave steepening within brass

instruments. The analysis was split into two sets of results; transfer function and

spectral centroid.

It was shown that the transfer function between the entrance to the tube and

5cm inside the tube, T 12, was between 0.8 and 1 for all the tubes. The 6mm

diameter tube showed the highest transfer function result at 1, suggesting that

the viscothermal losses are dampening the pressure wave so much so that the

amplitude difference between the nodes and antinodes is small. The simulation

showed a similar result but with all five tubes results giving lower T 12 results.

The transfer function between the entrance and the radiation measurement

point, T 14, showed clearly that the transfer function decreased with tube

diameter. This is as expected, with the larger diameter tubes having a larger

radiated pressure and less significant viscothermal losses. The simulation results

showed very good qualitative results, but for all tubes, except the 6mm diameter,
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had a smaller transfer function value. The assumed reason for this is that the

monopole radiation approximation in the simulation is over simplified.

To eliminate the possible complications caused by the radiation model the

internal transfer function, T 23, was examined. In this case, the simulation results

were larger than the experimental results for all tubes, suggesting that the losses

are under predicted in the simulation. The radiated spectral centroid, SC 4,

showed that the simulation results had little dependence on tube diameter, while

the measured results did to some extent. The simulation showed a lower spectral

centroid value for each tube at the highest amplitudes. For the largest diameter

tubes this effect could be due to the monopole radiation approximation, but this

does not explain the difference for the smaller diameter tubes.

The internal spectral centroid, SC 3, results are more consistent between

simulation and experiment, and also show less variation with diameter. There is

no clear trend associated with tube diameter for either the SC 4 or SC 3 results;

it is thought that this could be because of phase differences arising due to

the tuning of the measurement frequency for each individual tube. When we

consider the associated error in the frequency of the transfer function minima,

and the experimental errors discussed in Section 6.2.8 it becomes difficult to

analyse the meaning of trends within such a small range. It is possible that, at

the highest input amplitudes, these results could show a significantly different

trend if the experimental errors are approaching the outermost bound of 6%.

To eliminate phase difference effects the simulation was carried out at the same

chosen frequency for a larger range of diameter tubes; these results showed that

there is a peak in the spectral centroid around the 9mm and 10mm diameter

tubes, with a rapid decrease for the smaller diameter tubes where the viscothermal

losses become the dominant factor. There is also a drop in spectral centroid for

the larger diameter tubes which is thought to be because of the extra energy

needed by the player to produce a higher value spectral centroid.
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Chapter 7

Conclusions and future work

7.1 Analysis of the mechanics and computa-

tional modelling of slurred transients

Chapters 3 and 4 have discussed experimental and computational approaches to

slurred transients on brass instruments. It was found experimentally that players

who, on the horn, employ different playing techniques do indeed show different

characteristics in the results. In the lower register is is possible for players to

smoothly and discreetly stop the first note and move to the second note. It was

very surprising to find that it is possible for the frequency of the lips to change

from one note, to an octave higher, within the time taken for one cycle. The

player’s lips are still very much an unknown quantity in the brass instrument

system, with even the players not having a full understanding of how their lips

are moving. It would have seemed unlikely that the player was able to manipulate

the the lips such that the frequency of oscillation could change so quickly and

produce a smooth sounding slur. It was also found that different horns did not

make a difference to the characteristics of the results, showing that the player

can implement their chosen technique on different instruments. Good players are

very adept at manipulating the sound from an instrument to what they wish it

to sound like. While a beginner, given a high quality instrument, will most likely

struggle to make it sound flawless, an accomplished player will be able to make

a low quality instrument sound good.

It was found that, although different players show different characteristics

in the instantaneous frequency results, both player’s results showed differences
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7.1. Analysis of the mechanics and computational modelling of slurred transients

when octave slurs were played in different registers, and also when being slurred

upwards or downwards in frequency. While in the lower register the results varied

with player and slur direction, in the upper register all slurs showed very similar

frequency characteristics; it is not fully understood why this should be the case.

The computational model has been shown to be a useful tool in exploring

such transients, and very successfully model the instrument in the case of forced

oscillation. When employing the lip model, but not including viscothermal losses,

the model did show reasonable results but these did not show the same subtle

frequency characteristics of the player results during the transition.

7.1.1 Future work

This work has only scratched the surface of exploration into slurred transients

on brass instruments. Firstly, presented here was only a small number of

measurements, mainly on the horn by two different players. To fully understand

transients, both starting and slurred, a much fuller set of experiments is

required with a larger number of players, instruments and notes. Although it

is advantageous to study competent players to ascertain what makes a good

sound, it would also be very interesting, and hopefully enlightening, to study a

wide range of players with varying skill levels. Is is also essential to study not

only transitions that are deemed good, an exploration of the mechanics behind a

‘split’ note would be insightful.

This work was also concerned only with lip-slurs. There are a wide range

of brass instruments that use different types of valves to move between different

notes. Musicians are required to make any transition, that is marked as a slur,

sound smooth and seamless, whether this be through the use of valves or solely

through adjusting the lips and blowing characteristics.

An understanding of the player’s lips and embouchure are vitally important

in achieving a full understanding of transients, but so equally are other areas.

Little is known about what is happening in the player’s mouth cavity and tongue

during transients. Ideally, the pressure would be measured at numerous points

throughout the player/instrument system, including at various points along the

instrument bore.

The computational model work presented here was only preliminary and the

scope this could be used for is far reaching. Further work involving the model
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7.2. Extreme high notes

includes using simplified player data as an input in the latest version of the model

that contains treatment of the viscothermal losses. The input parameters for the

lip model also need more work to deduce the correct and best values for these.

As previously discussed, players use transients to assess the quality of

instruments. A computational model allows the bore profile to be modified

without modifying the physical instrument. It would therefore be interesting

to use the model to add defects to the instrument, a dent for example, and

investigate how this would affect a transient played on the instrument.

7.2 Extreme high notes

Extreme high notes on trumpets were explored in Chapter 5. There has long

been much mystery in the trumpet community over extreme high notes and how

players go about playing these notes. Some players have theories as to why it

is possible, whereas other believe it is simply a progression from the lower notes

that requires pressing the lips tighter and blowing harder. This work showed the

input impedance of a trumpet/mouthpiece combination that is used by players

wishing to play in the highest register of the trumpet. It is clear from the input

impedance that the peaks become much less significant above the 12th resonant

mode, and almost undiscernible above the 15th.

Measurements of the transfer function of the same instrument and mouthpiece

showed that between the 12th and 16th resonant mode frequencies there were

clearly defined peaks and troughs in the results.

Using a similar high speed photography technique as for the transients work,

a specialist player’s lips were filmed playing the 8th and the 12th resonant modes.

These results showed nothing out of the ordinary, in that the lips were opening

and closing periodically at the sounding frequency.

7.2.1 Future work

In the high speed photography work, the mouthpiece used must be one which is

chosen for high note playing. Although the mouthpiece used was transparent and

had the outer cup wall machined down, the optical access was not optimal as the

lips were viewed from an angle slightly off centre. For better quantitative results
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7.3. Cylindrical tubes as a simple brass instrument

the optical access to the lips needs to be improved, while retaining the specific

mouthpiece dimensions.

It was also found by the player that the setup was not entirely comfortable,

and for this reason there are no results shown higher than the 12th resonant mode.

Further work on this topic should include high speed filming of the lips at higher

frequencies, taking in the ‘super C’ note.

It would also be interesting to investigate the lips in the third dimension.

The lips protrude into the mouthpiece during playing and it would be interesting

to explore in 3-dimensions the differences in lip motion at the highest playable

frequencies.

7.3 Cylindrical tubes as a simple brass instru-

ment

Chapter 6 presented experiments on cylindrical tubes, using a forced oscillation

input, to investigate the relative importance of viscothermal losses and nonlinear

distortion during amplitude sweeps.

The transfer function results showed that when analysing the difference

between pressure signals in the radiation field, and at the entrance to the tube,

the transfer function decreased with tube diameter. This shows that the smaller

diameter tubes do indeed have more significant viscothermal losses than the larger

diameter tubes, and that the larger tubes radiate the sound more effectively.

The spectral centroid showed that in the radiation field the results did differ

with tube diameter but with no discernable trend. The internal spectral centroid,

however, showed much less variation with diameter.

The computational simulation results showed generally good comparisons with

the experimental data but the differences were taken to show that the monopole

radiation approximation is not fully adequate, and that the viscothermal losses

are under estimated.

When using the computational program to simulate tubes of diameters from

4mm to 16mm, at a fixed input frequency, it was found that there was a peak

in the radiated spectral centroid at around 9-10mm. The spectral centroid drops

off steadily at larger diameters and rapidly at smaller diameters. This is very

interestingly related to real brass instruments - if these diameters are the optimum
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7.3. Cylindrical tubes as a simple brass instrument

for a brass instrument, this could be why brass instruments are manufactured with

diameters around these values.

7.3.1 Future work

The simulation program has been shown to, on the whole, successfully model what

is seen experimental. It would be interesting to explore the effects of changing the

viscothermal loss parameters in the simulation to ascertain what value would be

needed to produce results in line with those seen experimentally. The monopole

radiation approximation is also a possible reason for inconsistencies between the

simulation and experimental results as it is a simplified approximation of that

radiation.

The obvious extension of this work is to move onto experimentally investi-

gating real instruments, namely trombones as the tubes used here were chosen

as a very simple trombone like instrument. It would be advantageous to explore

in more detail the radiation field, in the anechoic chamber, from the end of the

cylinders. With a more careful analysis of the radiation at different frequencies,

possible reasons for the monopole model not being satisfactory could be explored.

This thesis has used a number of experimental techniques, along with

computational simulations, to investigate various different issues within brass

instrument acoustics, that are as yet not fully understood. There is still great

scope for further analysis of these issues, that will hopefully lead to a full

understanding of the playability of instruments and how this relates to the choices

made by players on instruments. It is, understandably, difficult for players to

verbalise and quantify their feelings on different instruments and the motion and

dynamics of the lips during playing. Hopefully a full understanding of playability,

and possibly the development of a playability factor, can be formed which will

aid players, and makers alike, in the future.
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Appendix A

Transients - narrow bore horn
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Figure A.1: Synchronised signals for lip-slur from D3 to D4 by Player A, on
narrow bore horn by Boosey and Hawkes. Top: Mouthpiece pressure Middle:
Lip open area Bottom: Radiated pressure.
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Figure A.2: Synchronised signals for lip-slur from D3 to D4 by Player B, on
narrow bore horn by Boosey and Hawkes. Top: Mouthpiece pressure Middle:
Lip open area Bottom: Radiated pressure.
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Figure A.3: Synchronised signals for lip-slur from C3 to F3 by Player A, on narrow
bore horn by Boosey and Hawkes. Top: Mouthpiece pressure Middle: Lip open
area Bottom: Radiated pressure.
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Figure A.4: Synchronised signals for lip-slur from C3 to F3 by Player B, on narrow
bore horn by Boosey and Hawkes. Top: Mouthpiece pressure Middle: Lip open
area Bottom: Radiated pressure.
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Appendix B

Cylindrical tubes - spectral

centroid
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Figure B.1: Internal spectral centroid of the 6mm diameter tube during an
amplitude sweep at frequencies corresponding to a minima of the transfer
function, showing experiment and simulation results.
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Figure B.2: Internal spectral centroid of the 8mm diameter tube during an
amplitude sweep at frequencies corresponding to a minima of the transfer
function, showing experiment and simulation results.
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Figure B.3: Internal spectral centroid of the 10mm diameter tube during an
amplitude sweep at frequencies corresponding to a minima of the transfer
function, showing experiment and simulation results.
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Figure B.4: Internal spectral centroid of the 12mm diameter tube during an
amplitude sweep at frequencies corresponding to a minima of the transfer
function, showing experiment and simulation results.
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Figure B.5: Internal spectral centroid of the 14mm diameter tube during an
amplitude sweep at frequencies corresponding to a minima of the transfer
function, showing experiment and simulation results.

147



0 500 1000 1500 2000 2500
1

1.5

2

2.5

3

3.5

4

P1 rms (Pa)

S
C

4

 

 

Sim
Exp

Student Version of MATLAB

Figure B.6: Far field spectral centroid of the 6mm diameter tube during an
amplitude sweep at frequencies corresponding to a minima of the transfer
function, showing experiment and simulation results.
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Figure B.7: Far field spectral centroid of the 8mm diameter tube during an
amplitude sweep at frequencies corresponding to a minima of the transfer
function, showing experiment and simulation results.
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Figure B.8: Far field spectral centroid of the 10mm diameter tube during
an amplitude sweep at frequencies corresponding to a minima of the transfer
function, showing experiment and simulation results.
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Figure B.9: Far field spectral centroid of the 12mm diameter tube during
an amplitude sweep at frequencies corresponding to a minima of the transfer
function, showing experiment and simulation results.
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Figure B.10: Far field spectral centroid of the 14mm diameter tube during
an amplitude sweep at frequencies corresponding to a minima of the transfer
function, showing experiment and simulation results.
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France, 2010.

John Chick, Shona Logie, Jonathan Kemp, Murray Campbell, and Richard
Smith. An exploration of extreme high notes in brass playing. In Proceedings
International Symposium on Musical Acoustics, Sydney, Australia, 2010.

Shona M. Logie, Stefan Bilbao, John P. Chick, and D. Murray Campbell. The

159



BIBLIOGRAPHY

influence of transients on the perceived playability of brass instruments. In
Proceedings International Symposium on Musical Acoustics, Sydney, Australia.
2010.

L. Norman, J.P. Chick, S. Logie, and D.M. Campbell. Pitch bending on
early brass instruments. In Proceedings International Symposium on Musical
Acoustics, Sydney, Australia. 2010.

Shona Logie, John Chick, Murray Campbell, and Stefan Bilbao. The influence
of bore profile on slurred transients in brass instruments. In Proceedings Forum
Acusticum, Aalborg, Denmark, 2011.

John P. Chick, Shona Logie, D. Murray Campbell, Arnold Myers, and Joël
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