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Abstract

The precise nature of the motion of the lips of the musician is critically

important to the sound of the brass wind instrument. The player must match

the oscillation of the lips to the acoustical properties of the instrument and it

can take many years of practice to master the techniques involved. Visualisa-

tion techniques for capturing the motion of the lips during performance are

described and the behaviour of the lips quantitatively analysed using digital

image analysis. The concept of an artificial mouth for the sounding of brass

wind instruments is discussed and the motion of the artificial lips is compared

to that of human musicians.

When a brass instrument is played loudly the energy of the higher harmonics

increases, creating a distinctive ‘brassy’ timbre. It has been suggested that

saturation or constraint of the lips of the musician during extremely loud

playing is responsible for this change in sound. Measurements of the motion

of the lips of a number of different musicians on different instruments suggest

that the lips are not significantly constrained at any playing dynamic, and that

it is the phenomena of nonlinear propagation and shockwave generation that

is responsible for the increase in energy of the higher harmonics.

It is widely accepted that the starting transient of a musical instrument is of

great importance to both listener and musician. Previous studies of brass

instruments have focused on the steady-state behaviour of the lip-instrument

interaction. Measurements of the motion of the lips have been synchronised

with the pressure in the mouthpiece of the instrument and the sound radiated

from the bell in order to investigate the transient behaviour of the system

during both the starting transient and slurs between notes. This work has been

extended to include measurements of the pressure in the mouth of the player
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during the starting transient, and this information used to recreate realistic

transients using an artificial mouth. The transient behaviour of the system

is clearly affected by the time delay between the start of the note and the

acoustical feedback from the instrument beginning. The information obtained

can be used to aid in the creation of accurate computational and physical

models of brass wind instruments.
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Chapter 1

Introduction

‘After silence that which comes nearest to expressing the inexpressible is music.’

—ALDOUS HUXLEY

It comes as a surprise to many that the brass wind instruments are still

a topic of active scientific research. Modern orchestral instruments are

descended from designs that are hundreds of years old and do not, at first,

appear to present any great challenge to a physicist. They are—as a general

rule—constructed from few (if any) moving parts and at heart consist of little

more than a hollowed out cylinder which is open at both ends. Indeed, it

is possible to fashion a rudimentary trumpet using little more than a garden

hose.

Surely, then, such simple designs can be described in the simplest of terms?

A player sounds a note by pressing his lips against one end of the instrument

and buzzing them. The vibration of the lips couples to the instrument which,

since it is mainly cylindrical, will have acoustic resonances with approximately

harmonic frequencies. The buzzing sound made by the periodic motion of the

lips is then strongly amplified if the frequency of the vibration corresponds to
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the resonance frequency of one of the acoustic modes of the instrument. We

can then use basic Newtonian mechanics to describe the oscillations of the lips

and of the air column within the instrument. What more can there be to say?

In this oversimplified case, the fundamental frequency of the tone produced

by a brass instrument is a result of the linear coupling between the vibration

of the lips of the musician and a given mode of the instrument. In reality,

however, the coupling is not only nonlinear but takes place between the

lips and all of the acoustic modes of the instrument. In addition, real

brass instruments are not constructed from cylinders; instead they have

a mouthpiece, flaring bell, valves or slides (or both), and non-cylindrical

sections. To complicate matters further again, the instrument does not just

amplify the buzzing of the lips. The lips vibrate and interact with the

instrument, which in turn alters the vibrational behaviour of the lips. We shall

see that the brass wind instruments are in fact highly nonlinear—the sound

that is produced depends greatly on the precise form and amplitude of the

input. It is simply not possible to reduce the role of the instrument to that of

an amplifier.

Finally, we come to the lips themselves. When a musician wishes to sound

a note on a brass instrument he forces air through his lips, causing them to

periodically open and close. The most basic approximation that the physicist

can make of an oscillatory system is that of a mass on a spring. Modelling

the lips in this way has, in many ways, been very successful. However, the

lips are made of soft tissue and the musician can greatly vary their shape,

tension, and mechanical properties. During playing, each lip interacts not just

with the oscillating air column in the instrument but also with the hard rim

of the mouthpiece, the teeth of the player, and, indeed, the other lip. They
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move not in one dimension, but all three, and one section of the lip may move

in one direction whilst a neighbouring part behaves differently. How many

masses—and on how many springs—do you need to accurately describe the

forced, damped oscillation of such a system? This thesis aims to investigate

and quantify the behaviour of the lip-reed under a number of different playing

conditions.

Much of the earliest work to try and describe the physical properties of wind

instruments—of which the brass winds are but a part—was undertaken by

Helmholtz [1877]. He attempted to classify the musical valves—or reeds—by

their response to changes in pressure. Whilst the cane reeds of the clarinet or

saxophone can be unambiguously classified as being ‘inward-striking’ (they

close in response to an increase in static pressure at the input) it has not

yet been possible to classify the lip-reed of the brass instruments in the same

manner [Yoshikawa, 1995; Chen and Weinreich, 1996; Newton et al., 2008].

In the 1940s Martin [1942] used a stroboscopic technique to photograph

the motion of the lips of a cornet player. This pioneering work has since

inspired many other attempts to photograph and film the motion of the lips

of brass players during performance [Copley and Strong, 1996; Richards, 2003;

Bromage, 2007]. These experiments have been very successful in helping to

understand the behaviour of the lip-reed. However, experimenting in vivo

is not without its difficulties and so a number of researchers have followed

the lead of Gilbert and Petiot [1997] in the development of artificial mouths

for the sounding of brass instruments [Gilbert et al., 1998; Vergez, 2000;

Neal et al., 2001; Bromage et al., 2003; Petiot et al., 2003; Newton, 2008].

Over the last thirty years, computational simulations and physical mod-

elling of the brass wind instrument have run in parallel with experimental
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research, with experimentation providing physical parameters and constraints

as well as confirmation of the accuracy of simulations. In turn, simulations and

models of the system have suggested many avenues for renewed experimental

research. The first detailed model of the lips of the brass musician is normally

credited to Backus and Hundley [1971]. This work was developed further by

Elliot and Bowsher [1982] and there have since been many more models and

simulations [Caussé et al., 1984; Saneyoshi et al., 1987; Dietz and Amir, 1995;

Adachi and Sato, 1996; Msallam et al., 2000; Richards, 2003] to name but a few.

The question remains as to why it is important to develop a well grounded

understanding of the brass wind instruments. There is, of course, the scien-

tist’s natural desire to investigate the unknown, but perhaps more importantly

there is also the potential to assist musicians and instrument makers with

greater insight than we have at present. The differences between an excellent

instrument and an average—or even poor—instrument may be very slight. If

we are able to complete our understanding of exactly how the brass family

functions then perhaps it will be possible to advise manufacturers as to how

a design may be improved [Braden, 2006]. It may even be possible to use a

physical model to ‘hear’ an instrument before it has been built. The aim must

not be to replace the skilled craftsman, however, but instead to give him every

possible tool.

However, it is not only the future of brass instrument design to which we

look. Musicians and historians alike are interested in both preserving and

recreating the past. Many believe that music should be performed on the

instruments for which it was written—which, after many hundreds of years,

may not have survived in working condition, if at all. The careful application

of science may allow us to determine what an instrument may have sounded
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1.1. Aims

like, even if the surviving instrument examples are too fragile to be played. An

understanding of the underlying acoustics will allow us to objectively classify

the brass wind instruments [Myers, 1998].

1.1 Aims

The aims of this thesis are:

1. To measure and compare the lip opening area of the lips of the brass

wind musician as a function of time for a variety of different musicians

and instruments. Further, to extract information pertinent for the

development of accurate physical models of the lips.

2. To determine whether or not a constriction or restraint on the motion of

the lips at the loudest levels can be responsible for the distinctive ‘brassy’

timbre of brass instruments.

3. To investigate the motion of the lips in terms of their motion in the

direction of the airflow into the instrument with the aim of further

understanding the motion of the lips at varying dynamic level and pitch.

4. To compare the behaviour of the lips during the starting transient for

human players on a variety of instruments and to modify an artificial

mouth to reproduce this behaviour.

5. To design an experimental procedure for analysing the behaviour of the

lip-instrument system during both a lip-slur and a valve-slur.
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1.2. Contents

1.2 Contents

Chapter 2 contains a brief overview of the theoretical background required

to justify and understand the work carried out through the rest of the thesis.

In particular, the role of the lips of the musician as a pressure control valve

and the lip-instrument interaction are examined. One of the main aims of

experimental research in this area is to facilitate computational simulation and

physical modelling of brass wind instruments. With this in mind, some basic

physical models of the lips are discussed.

Chapter 3 presents the main experimental apparatus and methods used to

quantitatively measure the motion of the lips of brass musicians throughout

the thesis. The concept of an artificial mouth is introduced, and some

measurements of the relationship between the lip opening area, height, and

width of both human musicians and the artificial mouth are presented.

The sound of a brass instrument changes dramatically and distinctively

at the loudest playing levels. Chapter 4 begins with an examination and

explanation of some of the mechanisms which have been proposed as a means

by which this ‘brassy’ timbre is generated. One possibility is that the lips of

the musician become constrained or restricted in some way during playing

at the loudest dynamic. An experiment designed to test whether or not the

lip opening area changes as a function of amplitude is described. The data

obtained allows comparison of the lip opening area, mouthpiece pressure and

radiated sound for a variety of instruments at a number of differing dynamic

levels. The second section of this chapter details an attempt to investigate the

motion of the lips in the direction of the air flow. The design and manufacture

of a new mouthpiece with side window is described. Using this mouthpiece it
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1.2. Contents

was possible to use a high speed camera to film the ‘three-dimensional’ motion

of the lips of several different trombonists at the loudest dynamic levels, as

well as at more ‘normal’ volumes.

Chapter 5 contains an experimental investigation into the behaviour of the

lip-instrument system during the starting transient. The transient is an impor-

tant feature of brass instruments for two reasons: firstly, the ease with which

a player can form a note is used by musicians as an indicator of instrument

quality and second, the transient includes tonal information essential to the

listener. This chapter examines the behaviour of both lips and instrument

over the first 100ms of the start of a note on three different instruments—

two trombones and one horn—played by six different musicians. Analysis

of variations in amplitude and frequency of the lip opening area during the

starting transient is made. Additionally, the same analysis is applied to

the transients obtained during both a ‘lip-slur’ and a ‘valve-slur’ where the

musician changes smoothly from one note to the next.

The starting transient of the artificial mouth was investigated and the results

are shown in chapter 6. As part of this section of the work, the pressure in the

mouth of human players during the starting transient was also measured and

these results are given.

The final chapter, 7, presents the conclusions from this work along with

suggestions for further work in this area.
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Chapter 2

Lip reed and brass wind instrument

acoustics

‘Outside of a dog, a book is man’s best friend. Inside of a dog it’s too dark to read.’

—GROUCHO MARX

There are many textbooks that give a broader description of the acoustic

behaviour of lip-reeds and brass-winds than is appropriate for inclusion

within a thesis (for example [Benade, 1976; Backus, 1977; Fletcher and Rossing,

1998; Campbell and Greated, 2001]). A detailed overview of experimental

and theoretical research in the field was published in Acta Acustica 2004 by

Campbell [2004]. This chapter outlines the underlying theory directly relevant

to this work.

All of the common Western wind instruments (with the exception of the

flute family, which we will not consider here) operate in more or less the same

way. The musician places one part of the instrument in the mouth and blows.

This causes a reed to vibrate, which creates a modulation of the airflow into the

instrument. The reed behaviour is partly dependent on the properties of the
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Radiated sound

Acoustic pressure

Flow

Valve

resonatorStatic
mouth

pressure

Figure 2.1: A basic model of a wind instrument. The player creates a static
overpressure in the mouth. The pressure difference across the valve causes the valve to
oscillate and air to flow into the instrument. The lips receive acoustical feedback from
the air column within the resonator and further modulate the input airflow.

instrument body, which in turn are at least partly dependent on the behaviour

of the reed. In instruments like the oboe, clarinet, and bagpipes the reed is

typically made of cane.

In the case of brass instruments, however, the reed (or valve) mechanism

is formed by the player pressing the lips into the mouthpiece and buzzing

them, and so we use the term lip-reed. As the player blows, there is a

pressure difference created across the lips which causes them to oscillate,

creating an acoustic pressure signal at the input to the instrument. The lips

receive acoustical feedback from the air column within the instrument, further

modulating the airflow. This feedback loop is shown graphically in figure 2.1.

We can thus split our study of brass wind instruments into four parts [Carral,

2006]:

• The behaviour of the resonator—the air column or instrument bore.

• The behaviour of the acoustic generator—the lip reed.

• The coupling between the lip reed and the instrument.

• Any nonlinearities in the system.

9



2.1. The resonator

We will begin our theoretical treatment of the brass wind instrument with

the acoustic behaviour of the resonator—the instrument itself.

2.1 The resonator

Some typical brass wind instruments are shown in figures 2.2 (a modern

orchestral trombone), 2.3 (a modern horn) and 2.4 (a natural trumpet). They

can vary widely in size and shape, but the vast majority of brass instruments

share several common features. Typically, they consist of a cup shaped

mouthpiece, a section of tubing with cylindrical and conical sections of

approximately circular cross section and a rapidly flaring bell section. In some

cases the length of the instrument is fixed (for example, the natural trumpet),

and in others the player may alter the length either by the use of valves (as in

the modern horn) to introduce or remove some sections of tubing or by using a

slide (for example, the trombone) to change the length of the instrument. Some

brass instruments (such as the cornetto) make use of finger holes. However,

this is uncommon and no instruments of this type were investigated during

this work.

It is interesting to note that in spite of the name not all brass instruments

are made of brass, or even metal. In fact, there are several examples where the

resonator is made of wood. One highly controversial area of brass instrument

acoustics is whether or not the material from which an instrument is made has

an effect on the sound [Kausel and Mayer, 2008; Whitehouse and Sharp, 2008;

Pyle, 1998; Moore et al., 2005]. In this thesis, however, we do not consider the

effect of wall vibrations.

10
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Figure 2.2: A modern orchestral trombone. The bore is approximately cylindrical (in the
first position, approximately 70%). The player can change the length of the instrument by
the use of the movable slide section. Image provided by Arnold Myers [Myers, 2009]
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2.1. The resonator

Figure 2.3: A typical modern horn. The instrument has several conical sections. The
player can change the length of the instrument by using the valves to add or remove
sections of tubing. Image provided by J. Chick [Chick, 2009]

2.1.1 Pipe acoustics

As a brass player buzzes the lips, air flows into the instrument. The periodic

modulation of the air flow by the lip motion leads to the creation of a

longitudinal pressure wave which travels along the air column inside the

instrument. This wave is partially reflected at any impedance change (see

section 2.1.4). If the frequency of the pressure wave is close to one of the

resonances of the instrument then a standing wave will be developed within

the instrument.

First consider the case of a purely cylindrical instrument. As the lips

effectively close the instrument at one end we have to consider the resonant

behaviour of a cylinder closed at one end. In this case, our instrument has a

12



2.1. The resonator

Figure 2.4: A natural trumpet. The length of the instrument is fixed. Image provided
by Arnold Myers [Myers, 2009]

harmonic series (n=1,2,3...) whose resonances are given by:

Fn = c
2n − 1

4L
n = 1, 2, 3, ... (2.1)

where c is the speed of sound in air and we are considering an instrument

of effective length L. We note that these frequencies are in the ratio 1:3:5:7, etc

and as such our basic instrument would only be able to play the so-called ‘odd’

harmonics. An instrument of this type would be of fairly limited musical use.

In addition, it would also sound ‘muffled’ or ‘subdued’ [Backus, 1977]. This

is because the cylinder does not radiate sound effectively. Clearly, our basic

cylinder is not ready to be used as an instrument. Real brass instruments,

however, have a much more complicated shape—they have a rapidly flaring

bell and a mouthpiece. How do these change the acoustic properties of the

resonator?

13



2.1. The resonator

2.1.2 The bell

The effect of the bell was discussed in great detail by Benade and Jansson

in their two Acustica papers from 1974 [Benade and Jansson, 1974; Jansson

and Benade, 1974]. They make extensive use of the Webster equation, which

describes wave propagation along a tube of varying cross-section, S(x):

1

S

∂

∂x

(

S
∂p

∂x

)

=
1

c2

∂2p

∂t2
(2.2)

with c the speed of sound in air and p representing pressure. The flaring

section of the bell reflects low-frequency waves sooner than high-frequency

waves [Fletcher, 1999]. Benade and Jansson go on to define the ‘horn function’:

F =
1

r

d2r

dx2
(2.3)

where the horn radius at position x is given the symbol r. If we approximate

the wavefront as being spherical, then waves with wavenumber k = ω/c are

reflected where F = k2 [Fletcher, 1999]. The horn function F has a maximum

value, Fmax and waves with ω larger than c
√

Fmax will be transmitted without

hindrance.

In effect, the lowest frequency modes—with the longest wavelengths—

cannot ‘see’ the bell [Campbell and Greated, 2001] as its radius is smaller

than their wavelength. Accordingly, for the lower modes the instrument is

effectively shorter, raising the frequency of the lower modes. The bell also

acts as a high pass filter and improves the radiation of the higher frequency

components, giving brass instruments their distinctive sound. This also has

the effect of making the sound of brass instruments highly directional—the

high frequency components of the sound are most efficiently radiated in the

14



2.1. The resonator

direction in which the bell faces.

2.1.3 The mouthpiece

A typical horn mouthpiece is shown in figure 2.5. The mouthpiece consists of

a cup into which the player places their lips and connects to a tapered tube

called the shank. At the mouthpiece end, the shank has a radius much smaller

than the bore of the instrument. At the instrument end, the radius of the shank

is approximately equal to that of the instrument bore so that there is a smooth

join between the two. The shape of the mouthpiece means that it effectively

acts as a Helmholtz resonator [Campbell and Greated, 2001]. This resonator

has a dual effect; it strengthens some of the resonances of the instrument

[Benade, 1976] as well as reducing the frequencies of the higher modes of the

instrument [Backus, 1977].

Figure 2.5: A typical horn mouthpiece. The player pushes the lips against the rim and
into the cup. The back bore is normally tapered

So, the bell acts to raise the frequency of the lower modes whereas the

mouthpiece lowers the frequency of the higher modes. In this way, the
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2.1. The resonator

combined effect of instrument body, bell, and mouthpiece serves to create an

instrument whose resonances are very close to a complete harmonic series. The

exception to this is the pedal note of the instrument (the lowest playable note),

which exhibits some very interesting behaviour. The frequency of the pedal

note corresponds not to an impedance peak, but instead lies approximately

a perfect fifth higher [Gilbert and Aumond, 2008] than the frequency of the

lowest impedance peak.

2.1.4 Impedance

One of the most useful definitions we can make when describing the acous-

tics of brass wind instruments is the specific acoustic impedance, which is

normally denoted with a z. The specific acoustic impedance is a function of

frequency, ω, and is defined in the following way:

z(ω) =
p(ω)

u(ω)
(2.4)

where p(ω) is the acoustic pressure and u(ω) is the acoustic particle velocity.

We will make more use of the acoustic impedance, Z(ω) which is defined as

the ratio of specific acoustic impedance to cross sectional area, S, so that

Z(ω) =
p(ω)

u(ω)S
=

p(ω)

U(ω)
(2.5)

where we have defined the acoustic volume flow U(ω) = u(ω)S.

A typical measurement of the input impedance of a brass instrument is

shown in figure 2.6. Each resonance of the air column within the instrument

corresponds to a peak in the impedance plot [Fletcher and Rossing, 1998]. The

possible playing frequencies of the instrument are, as a general rule, very close
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2.2. The lip reed

to these resonances. As such, measuring the input impedance of an instrument

allows us to measure the frequencies at which the instrument will sound.

0 200 400 600 800 1000 1200
0

10

20

30

40

50

60

70

Frequency (Hz)

A
m

pl
itu

de

Eb Alto Horn Input Impedance

Figure 2.6: Typical input impedance of a brass instrument. This example is an E♭ alto
horn.

Backus and Hundley [1971] showed that it was the relationship between

the input impedance of the instrument and time-varying impedance of the

player’s lip opening that is primarily responsible for harmonic generation in

the trumpet (and by extension the other brass-winds). For further details, see

section 2.3.1.

2.2 The lip reed

2.2.1 Inward and outward striking reeds

We can think of a musical reed as a valve that is controlled by the pressure

that is generated across it. In wind instruments, the player typically places the

mouthpiece of the instrument in the mouth (or on the lips) and blows, creating

17



2.2. The lip reed

a static overpressure upstream of the reed. This creates a pressure difference

across the valve. In order to precisely describe the physics of the reed it is

necessary to describe its response to an increase in air pressure. There are four

possibilities: increasing pressure at the inlet to the valve either causes it to open

or shut, and similarly at the outlet.

Fletcher and Rossing [1998] use a (σ1, σ2) notation to classify reeds into their

various types, as shown in figure 2.7. σ1 has classification +1 if a pressure

excess p0 at the inlet tends to open the valve, and −1 if it closes it. σ2,

similarly, refers to the effect of a pressure p applied to the outlet. Helmholtz

[1877] was the first to attempt to classify musical valves into different types.

He called the (−1, +1) valve ‘inward-striking’ and the (+1,−1) ‘outward-

striking’. (+1, +1) has come to be described as either ‘sideways-striking’ or

‘sliding-door’. The combination (−1,−1) does not appear to have any musical

use.

(−,+) (+,−) (+,+)

p
0

p
0

p
0

p
p p

Figure 2.7: From the left: Inward Striking, Outward Striking, and Sideways-Striking
reeds. Adapted from [Fletcher and Rossing, 1998]

In woodwind instruments such as the saxophone or clarinet the sound is

generated by a periodic vibration of a cane reed in the mouthpiece of the

instrument. These instruments are well described by simple one-mass models

18



2.2. The lip reed

(for example [Bilbao, 2008; Dalmont et al., 1995; Dalmont et al., 2003]) where

the reed is represented as a mass on a spring. These single reeds have been

unambiguously been classified as inward-striking.

We now move on to the specific case of brass instruments.

2.2.2 The lips as a pressure control valve

In brass instruments the sound is generated not by the vibration of a piece of

stiff cane or plastic but instead by a buzzing of the lips of the musician (hence

the term lip reed). The lips present a difficult challenge to the theorist; their

geometry is not easy to describe and the player is able to greatly vary their

mechanical properties during performance. Observing the motion of the lips

during playing (see, for example, [Copley and Strong, 1996; Stevenson et al.,

2009b] or section 4.7) it is clear that the lips oscillate in all three dimensions.

It has not yet been possible to definitively classify the lip reed as either

inward or outward striking. In fact, the lips seem to display properties of being

both inward and outward striking [Newton et al., 2008; Chen and Weinreich,

1996; Cullen et al., 2000]. This ambiguity makes it impossible to describe the

physics of the lip reed using only a model with only a single degree of freedom.

However, despite the apparent difficulties in modelling the lip reed there

have still been some very successful attempts to do so. These studies generally

approximate the lip reed to be predominantly ‘outward-striking’. Some of the

most successful projects are those of Adachi and Sato [1996], Vergez and Rodet

[2000] and Msallam et. al [2000].
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2.2. The lip reed
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Figure 2.8: A basic one mass model of the lip reed. The lips are assumed to behave
like masses on springs. A constant pressure Pm is applied in the mouth and a volume
flow u enters the lip channel, whose height is denoted by h. The downstream pressure
is simply denoted p

h
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x
Figure 2.9: The lip opening area of a one mass model (as in figure 2.8). The height of
lip opening is again labelled h and the width of the channel is w. In some models, w is
kept fixed

2.2.3 A basic model of the lips

Elliot and Bowsher [1982] were among the first to formulate a satisfactory

model for the lip reed. A basic diagram of this model is shown in figure 2.8.

They assumed that the pressure in the mouth was constant, that any flow in

the lip channel could be described using the Bernoulli equation and that there

was no pressure recovery downstream of the lips. Under these conditions,

they showed that the volume flow across the lips, U, may be written in the

following form:
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2.2. The lip reed

U =

√

2∆P

ρ
A (2.6)

where the pressure difference across the reed is ∆P, the density of air is ρ and

the cross-sectional area of the lip opening is written as A. If we assume the

pressure in the mouth (Pm) is constant (the player blows at an approximately

constant rate) and include the implied time-dependence [Gilbert et al., 2006]

U(t) = A(t)

√

2(Pm − p(t))

ρ
(2.7)

then it becomes clear that the behaviour of the lip opening area as a function

of time has a direct bearing on the volume flow entering the instrument. The

opening area for the model in question is shown in figure 2.9.

A one-dimensional lip model, with angular frequency wl, mass per unit area

of the lips µl, lip opening H(t) and quality factor Ql can be defined in the

following way [Gilbert et al., 2006]:

d2

dt2
H(t) +

ωl

Ql

d2

dt2
H(t) + ωl

2H(t) =
Pm − p(t)

µl
(2.8)

If we then describe the acoustics behaviour of the instrument in terms of the

input impedance

P(jω) = Z(jω)U(jω) (2.9)

with the input impedance, mouthpiece pressure, and volume flow into the

instrument all treated in the frequency domain, and given symbols Z, P, and

U respectively. Combining equations 2.7, 2.8 and 2.9 gives the so-called ‘three

equation’ model of a brass wind instrument [Gilbert et al., 2006].
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2.3. The lip opening area

A basic one degree-of-freedom model has been greatly successful in produc-

ing realistic synthesised tones [Adachi and Sato, 1996; Dietz and Amir, 1995;

Msallam et al., 2000]. However, there are several features of the lip reed which

a one degree of freedom is unable to produce [Yoshikawa, 1995]. In particular,

a brass musician is able to ‘lip’ a note both above and below the resonant

frequency of the air column [Cullen et al., 2000; Cullen, 2000; Neal et al., 2001;

Campbell, 2004]. A four degree of freedom model is required to explain this

particular behaviour [Richards, 2003].

2.3 The lip opening area

In order to perform successful computational simulations of the behaviour of

the lip reed it is necessary to understand how the lip opening area varies as

a function of time. In order to simplify the calculations most models consider

not the opening area, but the opening height, H(t), of the lips, and assume that

the area is a basic function of the height. The most common approach is to

model the opening area in the form

A(t) ∝ H(t)n (2.10)

with n ≥ 1. For n = 1, the width of the lip opening remains constant

throughout the motion (the opening area is rectangular, with constant ‘width’).

This linear relationship was used in early work by Saneyoshi et al. [1987].

The n = 2 case was used by Msallam et al. [2000] to achieve considerably

more accurate results than in the simple linear model of Saneyoshi et al.. In

this quadratic relationship the width of the lip opening increases directly as

the height is increased.
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2.3. The lip opening area

Richards [2003] showed that the behaviour of the lip reed lies somewhere

between these two cases—that is, 1 < n < 2. In more recent studies, however,

it has been suggested that there may in fact be two values for the exponent n,

with each being used at different points in the cycle [Bromage, 2007].

2.3.1 Harmonic generation

The sound produced by brass instruments is complex. The sound heard

by the listener consists of many harmonically related frequency components,

some of which may have amplitudes larger than that of the fundamental.

Backus and Hundley [1971] performed a detailed experimental and theoretical

investigation into the physical mechanism behind harmonic generation in the

brass wind instruments. There were four main parts to their investigation:

1. Theoretical estimation of the amount of higher harmonic distortion that

should be expected within the instrument.

2. Measurement of variation in input impedance with sound pressure level.

3. Measurement of intermodulation distortion.

4. Measurement of output harmonic distortion for different mouthpiece

pressures

They found that nonlinear effects did not contribute greatly to harmonic gen-

eration, nor did the input impedance vary greatly at different input pressure.

They concluded that the main mechanism behind harmonic generation was

the relationship between the input impedance of the instrument and the time-

varying impedance of the lip opening. When the lip opening is small, the lip

impedance is much greater than the input impedance of the instrument for
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2.3. The lip opening area

any frequency. As the lips open further, their impedance lowers until it is

much smaller than that of the instrument. So, for some part of the cycle, the

volume flow into the instrument is controlled by the lips, and for the other

part it is controlled by the instrument itself. They used this information to

successfully simulate the resultant pressure created in the mouthpiece. It has

since been shown that Backus and Hundley underestimated the effect of the

nonlinear behaviour of the system [Elliot and Bowsher, 1982; Hirschberg et al.,

1996], however, their basic analysis remains sound.
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Chapter 3

Quantitatively analysing the motion

of the lips

’I’ll play it first and tell you what it is later.’

—MILES DAVIS

3.1 Optical techniques for studying the lip-motion

Early studies of the motion of the lip-reed during brass wind instrument

performance were conducted using a stroboscope [Copley and Strong, 1996;

Martin, 1942]. Stroboscopic technology requires a careful tuning of the strobe

frequency relative to the expected fundamental frequency of the lip vibration.

However, the stroboscope is unable to capture an entire cycle of lip motion in

real time. Assuming that the lip vibrations are uniform we can use aliasing in

order to reconstruct the motion of one individual cycle of motion from images

captured over several cycles. This means that stroboscopic studies can only be

made during the steady state regime of lip oscillation.
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3.1. Optical techniques for studying the lip-motion

Throughout this study a high speed digital camera has been used to capture

the motion of the lips. This technique is much simpler than the use of a strobe;

no assumptions about the lip motion or frequency need be made because the

sampling frequency of the camera is sufficient to capture the motion of the lips

directly. The camera used was a Vision Research Inc. Phantom v4.1. This

camera is capable of recording at frame rates as high as 10,000 frames per

second, depending on the resolution required. Throughout this work, a typical

frame rate was 6000 frames per second at an image size of 256x128 pixels.

3.1.1 Transparent mouthpieces

In order to allow the motion of the lips to be captured directly specially

designed transparent mouthpieces were used. These mouthpieces have been

developed and used over the course of several studies at the University of

Edinburgh [Richards, 2003; Bromage, 2007; Newton, 2008] which were in turn

based upon a design by Ayers [1998b]. These mouthpieces are designed so that

the shank protrudes sideways instead of forwards. This allows an optical glass

window to be placed in the plane facing the lips. A photo of the transparent

trombone and horn mouthpieces can be seen in figure 3.1. Schematics of the

mouthpieces are shown in figure 3.2 and figure 3.3. The horn mouthpiece

differs slightly from the trombone mouthpiece in that the rim and optical

window are not parallel. This is because during typical playing on the horn

the top lip tends to ‘overhang’ the lower. For this reason, it is necessary to film

from an angle slightly ‘below’ the straight-on position. To facilitate this, the

window is angled.

The mouthpieces are designed to be as realistic as possible for the player.

With this in mind, the rim dimensions and cup volume are based on com-
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3.1. Optical techniques for studying the lip-motion

mercially available models. The tenor trombone mouthpiece is based on

a Denis Wick 6BS whilst the horn mouthpiece has dimensions taken from

a Paxman 4C. The internal shape of the transparent mouthpieces differs

from that of more traditional mouthpieces, which tend to taper towards

the shank. However, large variations in internal cup shape exist between

different models of commercial mouthpiece and so it is not expected that

the internal shape is a critical factor in producing a playable mouthpiece.

Input impedance measurements have shown that the transparent mouthpieces

are very similar to the mouthpieces that are available for purchase by brass

musicians [Richards, 2003]. Musicians have stated [Bromage, 2007] that these

mouthpieces play well, particularly for the lower modes of the instrument.

Figure 3.1: The transparent mouthpieces for both trombone and horn. Rim
dimensions, cup volume and shank were all taken from commercially available models
in order to maximise the comfort and realism for the player
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3.1. Optical techniques for studying the lip-motion
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Figure 3.2: A schematic of the horn mouthpiece. The optical window is angled slightly
to allow the lip opening area to be observed when the top lip ‘overhangs’ the lower

3.1.2 Fixing the instruments during measurements

It was necessary to clamp the instrument in place during measurements. The

high speed camera has a narrow field of focus and so it is important that the

area of interest does not move once the camera is in position. Clamping the

instrument also ensured that the sound radiated from the bell of the instrument

was captured at the same point for each measurement.

The experimental apparatus for the trombone can be seen in figures 3.5

and 3.6. The tenor trombone is, typically, a fairly robust instrument. They

are fairly thick walled and have several struts and braces which are hard to

damage. This fact, coupled with the geometry of the instrument meant that

it was simple to fix the instrument in place using two clamp stands and some
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3.1. Optical techniques for studying the lip-motion
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Figure 3.3: A schematic of the trombone mouthpiece.

clamps. The instrument was angled slightly so that the nose of the player did

not touch the PCB microphone inserted into the mouthpiece. This did not

affect the playability of the instrument in any significant way.

The apparatus for the horn can be seen in figure 3.7. As can be seen,

this is considerably more involved than that of the trombone. The horn

has a complicated geometry, and given the design of the transparent horn

mouthpiece (see section 3.1.1) it was necessary to mount the horn ‘upside

down’ as can be seen in the figure. Additionally, horns do not typically

have any braces or robust sections and so it was not possible to clamp the

horn in position. Instead, it was tightly strapped onto a specially designed

scaffold which was further padded to protect the instrument. This setup

was both heavy and bulky, and so a more refined version was built for the

measurements of both ‘brassy’ playing (chapter 4) and of the starting transient

(chapter 5). This improved apparatus can be seen in figure 3.8. Normally,

during performance a horn player places his hand inside the bell. In order

to keep the experiment as realistic as possible the musicians were asked to
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3.1. Optical techniques for studying the lip-motion

Figure 3.4: A photo of the transparent horn mouthpiece in use. All of the lip motion
can be seen through the transparent window.

place their hand in the bell even though the instrument was oriented in an

unusual manner. Previous studies suggest that musicians are very consistent

in where they place their hand [Chick et al., 2004]. The musicians used were

confident that the unusual position of the horn did not radically alter the

playing characteristics or sound of the instrument.
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3.1. Optical techniques for studying the lip-motion

Figure 3.5: The experimental apparatus for experiments on the trombone. The
instrument was fixed in place with two clamps.

Figure 3.6: A closeup of the apparatus for experiments on the trombone. The
transparent mouthpiece can be clearly seen. The instrument was mounted at a slight
angle so that the nose of the player did not interfere with the apparatus. Playability
was unaffected

31



3.1. Optical techniques for studying the lip-motion

Figure 3.7: The first horn mounting system. The horn was strapped to a padded
scaffold. The instrument had to be mounted ‘upside down’ because of the shape of the
instrument. The high speed camera and light source can also be seen
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3.1. Optical techniques for studying the lip-motion

Figure 3.8: The improved horn mounting system. Three clamp stands were used to
support a cross beam. The horn could then be strapped tightly to the cross beam and
supported using some soft clamps. This setup was lighter, easier to manipulate, and
held the instrument more securely than the first system shown in figure 3.7
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3.2. Analysis method

3.2 Analysis method

In order to calculate the opening area of the lips as a function of time, each

video that was recorded on the high speed camera was split into a number

of sequenced bitmap (*.bmp) images, using the VideoMach software package

[www.gromada.com, 2008]. Examples of the images obtained can be seen in

figure 3.9.

MATLAB is a high-level language software package for ‘algorithm devel-

opment, data visualisation, data analysis, and numeric computation’ [Math-

works, 2008]. The images taken from each video were processed in MATLAB,

using a technique developed by Richards [2003] and Bromage [2007]. This

technique is repeated here for convenience.

3.2.1 Analysis of the high speed camera footage

The Phantom v.4 camera records in greyscale, and so each still taken from

the recordings is also in grey. The first image from the recording is loaded

into MATLAB and a threshold grey level is set by the user using a graphical

user interface. Each pixel with greyscale level above the threshold is set to

white and each below the threshold set to black. This ‘binary’ process can

be seen in figure 3.10. The software displays the ‘raw’ image on the left and

the ‘thresholded’ image on the right (as in figure 3.10) and the user adjusts

the threshold until they are satisfied that only the open area is displayed on

the right hand image. If the light level has been set correctly during the

recording process then choosing a threshold is straightforward. Bromage

[2007] estimated that the error in choosing the threshold was ±1 pixel, which

corresponds to a fraction of a millimetre. These errors are insignificant to the
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Figure 3.9: A complete lip cycle captured using the Phantom v4.1 high speed camera.
Note B♭3, tenor trombone. There are 22 successive images in this cycle, with 11 in each
row. The sequence runs from left to right, top row then bottom. Measurements taken for
analysis purposes typically had 40 or 50 images per cycle
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3.3. Lip open areas

analysis given here.

If the threshold is set correctly then the black pixels correspond to the

opening area of the lips. Once the user has set the threshold level MATLAB

counts the number of black pixels and in this way the lip opening area for

the image can be deduced. The software then automatically continues the

analysis for each image in the data set. This information is concatenated and

the time-varying behaviour of the lip opening area found. The software can

also be used to find the lip opening ‘width’ and ‘height’, by finding the areas of

maximum consecutive black pixels in both horizontal and vertical directions.

The user can constrain the software to look for the ‘height’ and ’width’ in the

appropriate sections of the image (ie in the center).

Figure 3.10: A sample lip image (left), and the corresponding isolated open area (right)

3.3 Lip open areas

Figures 3.11, 3.12 and 3.13 show three sets of open area data for recordings

made by three different horn players of the note F3 as played on the same

instrument. The musicians were asked to play at a mezzo forte dynamic. In all

three cases, the opening area of the lips changes in an approximately sinusoidal

manner. However, the lips remain closed for a significant proportion of the

cycle. It is interesting to note that the amplitude of the lip opening area varies
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Figure 3.11: Lip opening area as a function of time. Note F3, horn. The data was
recorded at 5, 000 frames per second. Player LN

only a little from cycle to cycle; the musicians are remarkably consistent in this

respect. For players LN and JC the opening area has an amplitude of around 12

to 13mm2. Player HP, however, has a much smaller amplitude of lip opening

area, of approximately 5.5mm2. The top lip of this player overhangs the bottom

more than is usual for a horn musician and this means that the lip opening

area that can be observed is correspondingly smaller. Otherwise, however, it

is clear that the motion of the lips of player HP do not appear to behave in an

anomalous fashion. It should be noted that this measured lip ‘opening area’ is,

in fact, a projection of the opening area onto a plane perpendicular to the lens

of the camera. During performance the lips of the musician tend to overlap (as

in the case of player HP). For these reasons, we must not assume that what we

are able to measure is the ‘true’ opening area. However, as a tool for extracting

quantifiable data about the motion of the lips, this analysis remains extremely
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Figure 3.12: Lip opening area as a function of time. Note F3, horn. Player JC

useful in terms of describing the general behaviour of the lip opening area.

With this proviso we shall continue to use the term ‘opening area’ throughout

the present work.
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Figure 3.13: Lip opening area as a function of time. Note F3, horn. Player HP
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3.4. Evaluating the relationship between lip opening area and lip opening height

3.4 Evaluating the relationship between lip open-

ing area and lip opening height

Figure 3.14: Lip opening area as a function of lip opening height and frame number
(time) for three cycles of the note F3 on the horn. The opening area and opening height
are plotted on a logarithmic scale. The opening phase of each cycle is shown in blue,
and the closing phase in magenta. Player LN

The relationship between the ‘height’ of the lip opening and the lip opening

area is of great interest to those aiming to create physical models of the brass

wind instrument, as discussed in section 2.3. Using the MATLAB analysis

software the lip opening ‘height’ can be calculated [Bromage, 2007]. If we

assume that the opening area is of the form

A(t) ∝ H(t)n (3.1)
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Figure 3.15: Lip opening area as a function of lip opening height, plotted on a
logarithmic scale, for the note F3 on the horn. These data correspond to the projection
of figure 3.14 onto the y − z axis. The opening phase of the motion is shown in blue
and the closing phase in magenta. Player LN

then graphing a plot of this mean lip opening height, H(t), against lip opening

area, A(t), on a logarithmic scale should produce a straight line whose

gradient is the value of the exponent, n.

Figure 3.14 shows lip opening area as a function of lip opening height and

frame number (time) for three cycles of the note F3 on the horn, as played by

player LN, with the opening area and opening height plotted on a logarithmic

scale. The opening phase of each cycle is shown in blue, and the closing

phase in magenta. It can be seen that the relationship between the lip opening

area and the lip opening height is not constant over the whole cycle. Figure

3.15 shows a projection of this data onto the height-area (y − z) axis. The
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3.4. Evaluating the relationship between lip opening area and lip opening height

Figure 3.16: Lip opening area as a function of lip opening height and frame number
(time) for three cycles of the note F3 on the horn. The opening area and opening height
are plotted on a logarithmic scale. The opening phase of each cycle is shown in green,
and the closing phase in magenta. Player JC

linear fits shown were performed by eye. This figure simplifies the process of

determining the precise nature of the area-height relationship. As the lips open

the relationship between the area and the height is approximately constant (ie

there is a region of constant n). Towards the point of maximum lip opening

the behaviour changes from one region of constant gradient to another. As the

lips begin to close again, the area-height relationship remains in this second

region for a considerable time, before returning back to the first region. In other

words, the lips open ‘along’ a path with gradient n ≈ 1.68, and then, at the top

of the motion, they ‘switch’ to the region with n ≈ 1.24 until they reach the

point of maximum opening. They then close back along this path, until they
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Figure 3.17: Lip opening area as a function of lip opening height, plotted on a
logarithmic scale, for the note F3 on the horn. These data correspond to the projection
of figure 3.16 onto the y − z axis. The opening phase of the motion is shown in green
and the closing phase in magenta. Player JC

switch back to the first region. It is interesting to note that there is a hysteresis

effect—the jump between regions occurs at different points in the opening

and closing phases of the motion. At the points of smaller opening area the

signal to noise ratio becomes poor and as such it is harder to determine any

fixed relationships between area and height when the lips are almost closed.

However, if one were to try a linear fit for the smaller amplitude data, it would

appear that it would have a gradient greater than 1.68.

The lip opening area as a function of lip opening height for the note F3, as

played by player JC on the horn, can be seen in figure 3.16. The projection

of this data onto the area-height axis can be seen in figure 3.17. There
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3.4. Evaluating the relationship between lip opening area and lip opening height

Figure 3.18: Lip opening area as a function of lip opening height and frame number
(time) for three cycles of the note F3 on the horn. The opening area and opening height
are plotted on a logarithmic scale. The opening phase of each cycle is shown in red, and
the closing phase in magenta. Player HP

are some clear similarities to the behaviour of the lips of player LN—the

closing phase appears to behave differently to the opening phase, and the

relationship between opening area and opening height varies over the course

of an individual cycle. Examining the 2-D projection of this data shows that

the situation here, however, is not as clear cut as it was in the case of player

LN. Towards the point of maximum lip opening it appears that the opening

and closing phases follow the same path, along a line with n ≈ 1.25. However,

there appears to be little evidence of the existence of different values of n for

the opening and closing phases, and little or no hysteresis effects. For this

player it is possible to perform a linear fit for the smaller amplitude data, and
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Figure 3.19: Lip opening area as a function of lip opening height, plotted on a
logarithmic scale, for the note F3 on the horn. These data correspond to the projection
of figure 3.18 onto the y− z axis. The opening phase of the motion is shown in red and
the closing phase in magenta. Player HP

in this region n ≈ 2.4. This is in agreement with the results of Bromage [2007]

who found some values for the exponent n with value greater than 2 in the

corresponding part of the cycle for trombone players.

Figure 3.18 contains the area-height-time information for the note F3, player

HP, on the horn. Again, the basic shape of the data is consistent with that

obtained from players JC and LN. Figure 3.19, the 2-D projection of this data,

again shows that in general terms the lips of player HP behave in much the

same way as the other two horn players discussed in this part of the study.

However, in terms of the specifics of the data there are some subtle differences

in the behaviour of the lips of player HP. The lips of this player open firstly
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3.4. Evaluating the relationship between lip opening area and lip opening height

‘along’ a region of constant n, with n ≈ 1.28. Towards the middle of the

opening phase they switch to a region with n ≈ 0.93, where they remain until

they begin to close again. Until now, no values of n < 1 have been observed.

Instead of closing along this same region, as in the case of player LN, the lips

return to the region of n ≈ 1.28 as soon as they begin to close, and remain on

this region for the entirety of the closing phase.

Player HP is a professional horn player with many years playing experience.

However, he has a slightly unorthodox playing technique in which the top

lip overhangs the bottom more than is normal for horn players. Perhaps

this accounts for the unusual value of the exponent n ≈ 0.93. In addition,

this player was not entirely comfortable with the unusual horn mouthpiece

and unorthodox mounting of the instrument. It is therefore difficult to say

whether or not this unusual lip behaviour is a true representation of the normal

behaviour of the lips of player HP.

In conclusion, the lips of all three musicians behave differently throughout

the cycle. The opening and closing phases are not the same, particularly

towards the point of maximum lip opening. For each musician it is possible

to express the lip opening area in terms of powers of the opening height. The

power required appears to vary over the course of an individual cycle. More

measurements, on more musicians, are required before firmer conclusions can

be drawn.

.
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Figure 3.20: Lip opening height and lip opening width as a function of time. Note F3,
horn. Player LN

3.4.1 Lip opening height and lip opening width as a function

of time

Figures 3.20, 3.21 and 3.22 show plots of lip opening height and lip opening

width as a function of time. These data correspond to the recordings shown in

figures 3.14, 3.16, and 3.18.

Examination of the area-height plots for these data suggested that the

motion of the lip was not symmetrical, particularly around the point of

maximum lip opening. Examining first of all the height and width data for

player LN we see that this hypothesis was accurate, particularly in terms of

the behaviour of the width of lip opening. The lip width increases rapidly
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Figure 3.21: Lip opening height and lip opening width as a function of time. Note F3,
horn. Player JC

from zero to its point of maximum opening, and then, when it begins to

close, the rate of closing is, initially, much less than the rate of lip opening;

clearly asymmetrical behaviour. In terms of the lip opening height, there is

less evidence of asymmetry, with the rate of change of opening height being

approximately constant during both the opening and closing parts of the cycle.

The lip opening height and width data for player JC is, at first glance, similar

to that of player LN, as can be seen in figure 3.21. The opening width increases

rapidly until it reaches its maximum value, and then during the closing part of

the cycle it decreases slowly before rapidly closing again. The opening height

is more symmetrical; with the closing phase being very similar to the opening

phase. However, if one compares the amplitudes of the lip opening width and
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Figure 3.22: Lip opening height and lip opening width as a function of time. Note F3,
horn. Player HP

height with that of player LN some differences can be seen. In the plots of

lip opening area in figures 3.11 and 3.12 it was shown that the amplitude of lip

opening area was nearly identical for these two recordings by the two different

players. However, it can be seen here that there are differences in the width and

height of the opening. The width of the embouchure of player JC is wider than

that of player LN. In order to make the opening areas approximately equal in

maximum amplitude, the maximum opening height of the lips of player LN is

therefore larger than that of player JC. It is expected that the most important

behaviour is that of the opening area, as it is this which controls the volume

flow of air into the mouthpiece. However, it is possible that variations in height

as opposed to width may have a small effect upon the sound created. It may
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be these small variations that make it possible for a player to create a unique

and distinctive tone.

Finally, the behaviour of player HP is once more consistent with that of the

other two horn players. There is clear asymmetry in the form of the lip opening

width, with the closing phase taking longer than the opening phase. The lip

opening height is more obviously asymmetrical than in the case of the other

two players, with the opening phase taking longer than the closing phase.

In conclusion, the lip opening behaviour of all three horn players is con-

sistent. In each case, when considering the behaviour of the opening height

and width, it seems that a small aperture opens in the centre of the lips at

the beginning of the cycle, which then rapidly increases in width whilst the

opening height steadily increases.

3.5 Experiments using an artificial mouth

There have been many studies of musical instruments using human players,

for example [Martin, 1942; Bouhuys, 1969; Yoshikawa, 1995; Ayers, 1998a;

Bromage et al., 2006; Fabre et al., 2008; Caussé and Freour, 2008; Amir, 2009].

However, it is desirable for the scientist to maintain as much control on

the parameters of the experiment as possible, and this may not be possible

using human test subjects. For instance, despite their best efforts it is not

reasonable to expect a trumpet player to be able to repeat a note in exactly the

same way multiple times. The player may make subconscious changes to the

embouchure or blowing pressure without being aware of it. Repeatability of a

measurement is one of the most desirable features of experimental research

in this area [Poirson et al., 2005]. Other than this, there may also be some
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experimental measurements that are just not practical or possible when using

a human musician. For example, there have been some studies that required a

controlled change in the mouth cavity of the player [Richards, 2003]. Clearly,

one cannot ask a trombonist to decrease the volume of the mouth by exactly

50ml. Other studies [Cullen, 2000; Richards, 2003; Newton et al., 2008] of the

lips of brass wind instrument musicians have required a laser diode to be

positioned at the back of the player’s mouth, ie in the throat. No human player

could be expected to put up with such an intrusive measurement, and even

if it were possible to insert a diode into the throat they could certainly not be

expected to play normally.

For these reasons, the development of artificial mouths has been a crucial

aspect of research into the performance of brass and woodwind instruments.

Whilst there are reports of mechanical devices for the sounding of brass

instruments reported as early as the 1940s [Martin, 1941] the first modern

artificial mouth for brass instruments is normally credited to Gilbert and Petiot

[1997]. Since then, there have been a large number of studies of brass wind

instruments using artificial mouths, for example [Vergez and Rodet, 1998;

Cullen et al., 2000; Neal, 2002; Petiot et al., 2003; Richards, 2003; Bromage, 2007;

Newton, 2008]. Richards [2003] states that the four main advantages for using
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an artificial mouth instead of human musicians are as follows:

• The artificial mouth can have any number of measuring devices inserted

into it; a human mouth cannot.

• A given embouchure will remain approximately constant on an artificial

mouth over a long time period, whereas the embouchure of a human

cannot be guaranteed constant over more than a single measurement.

• The artificial mouth can blow for as long as the experimentalist desires,

with precise control over pressure and flow rate. A human player can

only play for a finite time, and cannot control the pressure and flow with

such precision.

• The artificial mouth cannot make any unwanted alterations to the em-

bouchure. A human musician may, whether it be conscious or uncon-

scious.

However, despite all the advantages of using an artificial mouth for the

study of brass wind instruments, they have not yet entirely replaced human

musicians as test subjects. As useful as they are, there are still some features

of brass instrument playing that artificial mouths are unable to replicate. They

have a limited playing range [Bromage, 2007] and as we shall see in section

4.9 it is hard to achieve an extremely loud playing dynamic using an artificial

mouth. One of the aims of this work is to see whether or not the artificial

mouth can be used to produce a realistic starting transient. This is discussed

in section 6.2.3. However, despite their limitations they remain an incredibly

useful tool for the acoustician.
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3.5.1 Artificial mouth; design and schematic

Throughout this work, the artificial mouth that was used was that designed by

Newton [2008] at the University of Edinburgh. Newton refers to this design as

‘replica B’. This model is partly based upon an in vitro human vocal fold model

developed at the Institute de la Communication Parlee in Grenoble, France [Bailly

et al., 2006]. A schematic of this artificial mouth can be seen in figure 3.23.

In this design, the ‘lips’ are formed by stretching latex over an oval shaped

cavity, part of the ‘lip-block’, which can be seen in figure 3.24. Water is then

pumped into the latex and the cavity sealed using the water inlet valve. When

the lip-blocks are mounted into the mouth the embouchure can be controlled

by altering the position of the lip-blocks or by changing the water pressure in

the lips themselves. A faceplate cover is mounted on top of the lips so that

when an instrument mouthpiece is used there is no direct contact between the

lips and the mouthpiece. One of the drawbacks of the artificial mouth used in

previous studies at the University of Edinburgh was that the mouthpiece sat

directly on the lips, making it difficult to reproduce any particular embouchure

[Bromage, 2007]. The cover is designed so that ‘Replica B’ does not suffer from

this problem. However, as noted by Newton [2008], this particular artificial

mouth trades adjustability in return for stability. With this artificial mouth,

setting up an embouchure is time consuming and once an embouchure has

been found it is nearly impossible to alter it without starting once more from

the beginning. If the embouchure that is found is not ideal then there is little

scope for altering it quickly.

The artificial mouth was attached to an Air Control Industries Ltd 8MS11

0.25kW air pump which was used as the ‘lungs’ of the artificial mouth.

The air pressure supplied to the mouth could be adjusted using a rotary
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valve. Once an instrument was mounted onto the artificial mouth and the

pump started, the pressure in the lips themselves was altered until a playable

embouchure was found. At this point, the system was ready for measurement.

A photograph of a trombone mounted onto the artificial mouth can be seen in

figure 3.25, and figure 3.26 shows a close up of the lips through the transparent

trombone mouthpiece.

Mouthpiece

window

Airflow

Optical access

Faceplate cover

Faceplate

Mouth cavity

Lip blocks

Figure 3.23: The artificial mouth (‘replica B’) designed by Newton. The individual
elements are shown on the right and the assembled replica shown on the left. From
[Newton, 2008]
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Latex sheet
Air purge valve (not visible)Water inlet valve  (glued to lip block)
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Figure 3.24: A schematic of the lip block designed by Newton. The lip is formed by
stretching latex over a small oval cavity, sealing with superglue. Water is then used to
fill the lip using the water inlet and purge valves. From [Newton, 2008]
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Figure 3.25: The artificial lips playing the trombone
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Figure 3.26: A close up of the artificial lips viewed through the transparent trombone
mouthpiece
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3.5.2 Artificial lips: opening areas
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Figure 3.27: Opening area as a function of time. Note G2, trombone. Player artificial
lips

Three typical lip opening areas of the artificial mouth playing the note G2 on

the trombone are shown in figures 3.27, 3.28 and 3.29. There are clearly some

differences between the form of the lip opening area for the artificial lips when

compared to that of the human musicians shown in section 3.3. The opening

area of the lips is approximately sinusoidal, but around the point of maximum

opening area the behaviour deviates from this simple form. It can be seen

that there are ‘double’ peaks, with the lips closing a little before opening even

further. Observing the videos of the lip motion it can be seen that these double

peaks are caused by the behaviour of the water inside the lips. As the lips open,
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Figure 3.28: Opening area as a function of time. Note G2, trombone. Player artificial
lips

the water inside starts to move, and around the point of maximum lip opening

the momentum of the water itself becomes important. As the lip reaches the

point of maximum opening area the water redistributes itself, causing the lip

itself to move. In order to create a more realistic artificial lip the damping of the

substance inside the lip has to be increased. Introducing a colloid, or perhaps

some sponge, into the water would increase the viscosity and dampen some of

the effects of the water moving around inside the lip. Alternately, a fluid other

than water could be used, so long as the viscosity of the new fluid is higher

than that of water.

Secondly, it can be seen that the lips of the artificial mouth do not close

completely during the cycle. The minimum value of the opening area is
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Figure 3.29: Opening area as a function of time. Note G2, trombone. Player artificial
lips

approximately 1mm2, and the lips remain at this value for a significant

proportion of the cycle. Examining the video footage confirms this analysis.

Figure 3.30 shows a still from the footage corresponding to this point in the

cycle. The left hand edge of the lips, circled in red, does not appear to close at

any part in the cycle. In fact, this region of the lips does not appear to move

at all during the oscillation. Instead, the ‘edge’ of the motion corresponds

Figure 3.30: With this embouchure, the lips did not close completely at the sides of the
mouth
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to a point further along the lip. It appears that the embouchure that was

achieved in this specific case was not an ideal one. However, the artificial

mouth was still able to produce a satisfactory tone on the trombone and the

results obtained are consistent with those obtained with human musicians.

3.5.3 Artificial lips: area-height relationship
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Figure 3.31: Lip opening area as a function of lip opening height and frame number
(time) for three cycles of the note G2 on the trombone. The opening area and opening
height are plotted on a logarithmic scale. The opening phase of each cycle is shown in
black, and the closing phase in magenta. Player artificial lips

Figures 3.31, 3.33, and 3.35 show three typical sets of lip opening area as a

function of lip opening height and time (frame number) as recorded using the

artificial mouth. Figures 3.32, 3.34, and 3.36 show the 2-D projection of these
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Figure 3.32: Lip opening area as a function of lip opening height, plotted on a
logarithmic scale, for the note G2 on the trombone. These data correspond to the
projection of figure 3.31 onto the y − z axis. The opening phase of the motion is shown
in black and the closing phase in magenta. Player artificial lips

data onto the area-height plane. All of the lip opening area and height data are

plotted on a logarithmic scale in order to extract the value of the exponent n.

It is clear that there are several differences to the lip opening behaviour of the

artificial mouth when compared to that of the human musicians in section 3.4.

In all three cases, the artificial lips open along a region of constant n ≈ 1.0,

and they remain in this region for the vast majority of the opening phase.

When they begin to close, they remain in this region for approximately half

of the closing phase at which point the relationship between area and height

can no longer be described using a linear fit. It is important to note that the

behaviour of the lips at the point of closure has been obfuscated by the fact
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Figure 3.33: Lip opening area as a function of lip opening height and frame number
(time) for three cycles of the note G2 on the trombone. The opening area and opening
height are plotted on a logarithmic scale. The opening phase of each cycle is shown in
black, and the closing phase in magenta. Player artificial lips

that this embouchure did not close entirely (see figure 3.30). For this reason,

it is not possible to make precise quantitative analysis of the motion of the

artificial lips near the point of closure.

The lips were found to open and close asymmetrically in the case of the three

human musicians—the relationship between opening area and opening height

was different in the opening phase when compared to the closing phase. In

contrast, however, the artificial lips appear to open and close in a remarkably

symmetrical manner, with the opening and closing phases being impossible

to separate for the vast majority of the cycle. Additionally, in all three cases

the value of n in the best defined region is approximately equal to 1. In all
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Figure 3.34: Lip opening area as a function of lip opening height, plotted on a
logarithmic scale, for the note G2 on the trombone. These data correspond to the
projection of figure 3.33 onto the y − z axis. The opening phase of the motion is shown
in black and the closing phase in magenta. Player artificial lips

but one of the recordings made with human players the exponent was > 1.

This implies that the way the artificial lips open and close is different to that of

human musicians. Indeed, when observing the video footage for the artificial

lips, it is clear that the lips tend to open to their full width almost immediately

at the start of the cycle with the corresponding open area then depending

almost purely on the opening height. In our basic model, when n = 1 the

opening area is modelled purely as a rectangle of varying height. Thus, n ≈ 1.0

is not an unexpected or unrealistic value for our artificial lips. However,

despite the differences to the behaviour of human lips, it is reassuring that

the value of n is consistent for each of the recordings made on the artificial
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Figure 3.35: Lip opening area as a function of lip opening height and frame number
(time) for three cycles of the note G2 on the trombone. The opening area and opening
height are plotted on a logarithmic scale. The opening phase of each cycle is shown in
black, and the closing phase in magenta. Player artificial lips

mouth—consistency of embouchure was one of the guiding aims of its design.

In this respect, the artificial mouth has been very successful.

3.5.4 Lip opening height and lip opening width as a function

of time: artificial mouth

Figures 3.37, 3.38, and 3.39 show the variation of lip opening height and width

as a function of time for the three recordings made on the artificial mouth. It

can be seen that in each case, the lip opening width reaches its maximum value

almost instantly, and then remains approximately constant for the majority of

65



3.5. Experiments using an artificial mouth

10
0

10
1

Note: G2, Tenor Trombone, player Artificial Lips

Height (mm)

O
pe

n 
ar

ea
 (

m
m

2 )

n~1.0

opening

closing

Figure 3.36: Lip opening area as a function of lip opening height, plotted on a
logarithmic scale, for the note G2 on the trombone. These data correspond to the
projection of figure 3.35 onto the y − z axis. The opening phase of the motion is shown
in black and the closing phase in magenta. Player artificial lips

the cycle. This implies that with this embouchure, in contrast to the behaviour

of the human players, the motion does not ‘begin’ in the centre of the lip but

rather that all points along its surface begin to move at the same time. This

in agreement with the results of the previous section, where the artificial lips

were shown to behave approximately in the same manner as a rectangle of

varying height. There do not appear to be any significant hysteresis effects

and the lip motion is symmetrical across both opening and closing phases of

the oscillation.

In terms of the lip opening height, the behaviour of the artificial lips is more

consistent with the behaviour of the human players than in the case of the lip
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Figure 3.37: Lip opening height and lip opening width as a function of time. Note G2,
trombone. Player artificial lips

opening width. The variation in opening height is approximately symmetrical

during both stages of the oscillation, and it grows and decreases at a slower

rate than the lip opening width. Here, however, there appear to be some small

‘double peaks’ in the lip opening height. The artificial lips are filled with water

and as such are less heavily damped than the lips of a human. The lower

damping factor accounts for these double peaks in the maximum values of the

opening height.
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Figure 3.38: Lip opening height and lip opening width as a function of time. Note G2,
trombone. Player artificial lips
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Figure 3.39: Lip opening height and lip opening width as a function of time. Note G2,
trombone. Player artificial lips
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3.6 Conclusions

Equipment and experimental methods for quantitative behaviour of the mo-

tion of the lips during playing of brass wind instruments were discussed. It

was found that for human musicians the relationship between lip opening area

and lip opening height could be described using a combination of linear fits,

with each fit being used during a different part of the cycle. Around the point

of maximum opening the lips tended to open along one region of constant

gradient, n, and close along another. There was evidence of hysteresis effects

as the lips changed from one region to another. It is possible to hear the

differences between computational simulations performed using n = 1 and

n = 1.5 [Gilbert et al., 2006]. It would be an interesting exercise to vary n

over the course of a single cycle to see whether or not the simulation was

audibly improved. Repeat measurements, on more musicians, are required

before firmer conclusions can be drawn. The lip opening width during the

steady-state oscillation was shown to be asymmetrical whilst the lip opening

height was approximately symmetrical across the opening and closing stages

of the motion.

Experiments using an artificial mouth showed that using a mechanical

playing device to sound a brass instrument produces results that are both

consistent and repeatable. For the artificial lips the relationship between

opening area and lip opening height was simpler than in the case of the human

musicians. The opening area of the artificial lips tends to behave in the manner

of a rectangle of varying height, with the lips reaching their maximum opening

width almost immediately. For the majority of the cycle the opening and

closing phases of the lip were indistinguishable in terms of the relationship
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between opening height and width. The motion of the artificial lip during the

steady-state was found to be symmetrical in terms of both lip opening width

and lip opening height.

It should be noted, however, that we are comparing the behaviour of the

lips of human horn players with the lips of an artificial mouth playing the

trombone. This is for two reasons—firstly, the current artificial mouth is

optimised for trombone playing and it was difficult to use it to form an

embouchure suitable for playing the horn. Secondly, previous studies have

concentrated on the lips of human trombone players, for example [Copley

and Strong, 1996; Richards, 2003; Bromage, 2007] and so an attempt has been

made here to widen the scope of experimental investigation by concentrating

on horn players. However, the behaviour of the lips of human trombonists

and horn players seems to be sufficiently similar that it is not unreasonable to

compare the behaviour of the artificial mouth during trombone playing with

that of human musicians playing the horn.

Since the artificial lips and the lips of human musicians appear to behave

differently around the point of maximum opening, it is desirable to alter the

artificial lips to produce more realistic behaviour. It would seem unlikely

that the human player is able to control the embouchure precisely enough

to directly alter the relationship between lip opening height and lip opening

area over a small proportion of the cycle, or to repeat this alteration several

hundred times in the course of a single second. Instead, it is more probable

that the change in the way the lips open and close is linked to the mechanical

properties of the lips themselves—that is, the properties of the tissue and

muscle that surround the lips. The current artificial lips are filled with water,

and whilst they are capable of producing satisfactory sounds, they are not
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damped heavily enough (see section 3.5.2) in comparison to the lips of human

musicians. Replacing the water with some kind of foam or gel, or perhaps

using a sponge or colloid inside the artificial lips may be a good way to

produce a more realistic ‘feel’ for the artificial lips without sacrificing sound

quality.

The ‘binary’ analysis procedure discussed in section 3.2.1 works successfully

for the majority of videos obtained during this work. However, if the lighting

of the lips is less than perfect then it is possible that shadows on the lips

(particularly in the corners of the mouthpiece) can add ‘noise’ to the area data

obtained. In addition, for small opening areas it is hard to select an appropriate

threshold by eye. Finally, for some of the footage obtained it was found that

the teeth of the player could be seen. The teeth typically lie ‘in’ the open area

of the lips and so make it hard to calculate an accurate open area. In order

to simplify the analysis process for future work it may be desirable to switch

to an alternate method of calculating the open area of the lips. Some kind of

edge detection software would appear to be the most appropriate avenue for

exploration.
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Chapter 4

The behaviour of the lip reed

during extremely loud playing

’Ignorant people think it’s the noise which fighting cats make that is so aggravating,

but it ain’t so; it’s the sickening grammar they use’

—MARK TWAIN

4.1 The brassy sound

One of the most distinctive features of brass wind instruments is that their

timbre is strongly dependent upon the dynamic level at which they are

played. At loud levels, the sound becomes recognisably ‘brassy’ (sometimes

described as ‘cuivré’). This rather unique tone is produced by an increase

in the energy level of the higher harmonics [Backus and Hundley, 1971;

Hirschberg et al., 1996; Stevenson and Campbell, 2008] and is commonly used

by both composers and musicians as a form of musical expression. Typical

waveforms and frequency spectra for brassy and ‘non-brassy’ playing on the

horn are given in figure 4.1 and figure 4.2, clearly demonstrating an increase
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4.2. Brassy playing: theory

in the energy of the higher harmonics. It is interesting to note that the effect is

more dominant in some instruments than others; for instance, the trombone

is generally considered to be brassier than the euphonium. Indeed, some

researchers have attempted to assign a ‘brassiness coefficient’ as a method of

musical taxonomy [Gilbert et al., 2007], with promising results.
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Figure 4.1: Typical waveforms as heard by the listener for brassy and non-brassy
playing on the horn. Note F4. There is a clear change in the form of the pressure signal

There have been several suggestions as to the physical mechanism by which

the brassy sound is produced. These hypotheses are discussed in the following

sections.

4.2 Brassy playing: theory

Backus and Hundley [1971] were among the first to make a serious attempt

at identifying the physical mechanism by which harmonics were generated on

brass instruments and this paper is still widely cited today. They concluded
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Figure 4.2: Frequency spectra for the waveforms given in figure 4.1. Note F4, horn.
The increase of the energy in the higher harmonics can be clearly seen

that nonlinear behaviour of the air column was not a major factor in the

production of harmonics, accounting for only a few percent of the total

harmonic distortion.

However, Beauchamp [1980] suggested that when brass instruments are

played loudly nonlinear propagation within the air column of the instrument

could become important and this was confirmed by the work of Elliot and

Bowsher [1982]. Hirschberg et al. [1996] were able to verify that nonlinear

effects were responsible for the formation of shockwaves within the bore of

brass instruments. These nonlinear effects have been further verified both

experimentally [Pandya et al., 2003] and theoretically [Thompson and Strong,

2001; Msallam et al., 2000]. A brief overview of the theory of nonlinear

propagation is given in the following section.
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4.2. Brassy playing: theory

4.2.1 Weak nonlinear propagation

The linear acoustic wave equation is normally written in the following way:

∂2p

∂x2
=

1

c2

∂2p

∂t2
(4.1)

where p is the acoustic pressure, x and t denote position and time, and c is

the speed of sound which, in this case, is constant. In order to derive this

equation it is necessary to make the assumption that the acoustic amplitudes

are small when compared to the mean values of all the quantities concerned.

This equation, therefore, is no longer valid when the pressure amplitude of

the acoustic wave is no longer insignificant when compared to the mean

atmospheric pressure. Inside a brass instrument, such as a trombone, the

acoustic pressure amplitude can be as high as 10% of the mean atmospheric

pressure [Gilbert, 2006] and as such the linear approximation can no longer be

used.

One method of deciding the applicability of the linear approximation is

by considering the dimensionless acoustic Mach number, M = ν/c0, where

ν is the acoustic velocity and c0 is the speed of sound from the linear

approximation. When M ≃ 1 we are in the ‘strongly’ nonlinear regime and

any attempt at linearising the fundamental equations is impossible. However,

for M ≪ 1, the so-called ‘weakly nonlinear’ regime, it is still possible to

observe significant nonlinear effects. In this regime we are still able to make

some use of linear approximations (with appropriate modifications). This is

possible because the nonlinear effects are negligible over distances small when

compared to one wavelength. However, the nonlinear effects are cumulative

and so on the large scale we are able to measure the effects of nonlinear
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4.2. Brassy playing: theory

propagation.

For a plane wave, travelling in the forward direction, the nonlinear propa-

gation equation is [Rossing, 2007]:

∂p

∂t
+ (c + ν)

∂p

∂x
= 0 (4.2)

It can be shown that when the pressure amplitude exceeds the linear limit

the speed of sound can no longer be considered constant. For the weak

nonlinear case, the speed of propagation of a wave is given by [Hamilton and

Blackstock, 1998]

c = c0 + ν

(

γ(T) − 1

2

)

(4.3)

with γ is the ratio of specific heats for the medium in question. The

temperature dependence of γ has been made explicit. Combining equations

4.2 and 4.3 we get:

∂p

∂t
+

(

c0 + ν

(

γ(T) + 1

2

))

∂p

∂x
= 0 (4.4)

This is the weakly nonlinear plane wave equation.

There are, accordingly, two reasons for the distortion of a propagating

wave in the weak nonlinear regime. Firstly, the large amplitude acoustic

oscillations create alternating regions of compression and expansion within

the propagation medium, which in turn affect the local temperature of that

medium. Since the speed of sound is temperature dependent in the nonlinear

case, these local variations in temperature mean that different parts of the

acoustic pressure wave travel at different velocities.

The second effect to consider is that of fluid entrainment. As an acoustic

77



4.2. Brassy playing: theory

wave travels through a medium, the medium oscillates. If the amplitude of

the oscillations is significant (as in the nonlinear case) then when calculating

the resulting wave speed of the acoustic pressure wave then we must take

into account the oscillation of the medium itself. In effect, an observer would

not see a wave travelling at constant velocity c, but instead a wave where the

propagation speed was given by (c + ν). As a result the top of the wave travels

faster than the bottom.

So, the combined effect of the temperature dependence of the wave speed

and the fluid entrainment effect is to cause the crest of a pressure pulse

within the instrument to travel slightly faster than the ‘trough’ of the pulse,

‘steepening’ the wave. If the nonlinear effect is strong enough, and the air

column sufficiently long, then this wave steepening can cause shockwaves

to be formed within the body of the instrument [Pandya et al., 2003]. It is

interesting to note that the nonlinear effect is more significant in instruments

with predominantly cylindrical bore profiles (such as the trombone) than

predominantly conical instruments (such as the flugelhorn) because conical

tubing tends to counteract the nonlinear propagation effect [Hirschberg et al.,

1996; Gilbert et al., 2007] .

It is now widely accepted that it is this nonlinear wave steepening and

shockwave formation which is primarily responsible for the brassy sound.

However, there are still some other suggestions as to alternative mechanisms

by which this distinctive timbre may be created, or reinforced.

4.2.2 Wall vibrations

The walls of a brass instrument vibrate as a sound is produced [Knauss

and Yeager, 1941], and as the musician plays louder the amplitude of these
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vibrations increases. There is still much debate as to whether or not the

vibrations of the instrument walls adds significantly to the sound produced

by the instrument [Kausel and Mayer, 2008; Whitehouse and Sharp, 2008;

Nief et al., 2008; Moore et al., 2007]. Moore et al. [2005] comment that the effect

of bell vibrations seems to vary from instrument to instrument, with studies on

trombones tending to support the hypothesis that vibrations of the bell have

little effect on the radiated sound [Smith, 1986] whilst studies on trumpets and

horns tend to suggest the opposite [Lawson and Lawson, 1985]. With this in

mind—and since the brassy sound is very much a distinctive feature of the

trombone—it seems unlikely that vibrations in the bell of the instrument alone

can cause the dramatic change in timbre to be found in brass instruments when

played at their loudest levels. Wall vibrations may contribute to the brassy

sound, but they are almost certainly not a primary cause.

4.2.3 Constraints of the lip motion

It has also been suggested by some researchers that the degree to which

the lips can open becomes ‘saturated’ or ‘clipped’ during extremely loud

playing as the movement of the lips becomes constrained by the rim and

cup walls of the mouthpiece [Fletcher and Tarnopolsky, 1999; Widholm, 2005;

Moore et al., 2005]. This effect, if present, would contribute significantly to the

production of a brassy sound. Martin [1942] performed some measurements

in which he showed that during mezzo forte playing on the cornet the

variation of lip opening area with time was almost sinusoidal. Other studies,

using trombones, showed that the open area between the lips did not vary

sinusoidally. In fact, the ‘closing’ part of the lip motion took longer than the

‘opening’ phase [Copley and Strong, 1996; Bromage et al., 2006]. This effect
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was more pronounced in large amplitude playing.

Testing the hypothesis of lip constraint during extremely loud playing is one

of the major aims of this work.

4.3 Chapter aim

In order to test the hypothesis that the brassy sound is caused by saturation of

the lip opening area at large playing amplitude, the high speed digital camera

and transparent mouthpieces (detailed in section 3.1) were again put to use.

Three musicians—skilled amateurs with many years playing experience—

were asked to play pairs of notes at two different playing dynamics; one clearly

brassy to the ear and one clearly non-brassy. The lip opening area for each note

was captured using the Phantom v4.1 high speed digital camera. Recordings

of the pressure fields inside the mouthpiece and radiated from the bell of the

instrument were compared for different dynamic level.

4.4 Experimental Method

Experiments for this part of the work were carried out on both tenor trombone

and horn. The experimental setup for the trombone can be seen in figure 4.3

and that of the horn in figure 4.4.

4.4.1 Video footage

The players were asked to play two notes; one at a mezzo forte (mf ) level and the

other at a clearly brassy dynamic (ffff ). The Phantom v4.1 high speed camera

and transparent mouthpieces (see section 3.2.1) were once again used to film
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Figure 4.3: The experimental setup for the trombone during brassy playing. The
Phantom camera was used to film the motion of the lips. A PCB 106B pressure
transducer was inserted into the transparent mouthpiece (see figure 4.7) and a Brüel
and Kjær 4192 microphone used to record the radiated sound

the motion of the lips of the musicians during performance. Figures 4.5 and

4.6 show a typical set of images captured by the camera for both non-brassy

and brassy playing on the tenor trombone.

4.4.2 Pressure signals: extremely loud playing

Typical acoustic pressure amplitudes inside the mouthpiece of a trombone or

horn are of order 103 Pa, and at the loudest levels can reach 104 Pa. Most

audio microphones are not designed to measure signals of this magnitude

and, indeed, many would be damaged by insertion into such a pressure field.

As such, a low sensitivity microphone was needed to record the pressure
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Figure 4.4: The experimental setup for the horn during brassy playing. The Phantom
camera was used to film the motion of the lips. A PCB 106B pressure transducer was
inserted into the transparent mouthpiece (see figure 4.8) and a Brüel and Kjær 4192
microphone used to record the radiated sound

in the mouthpiece. A PCB 106B pressure transducer—a low sensitivity

microphone—was placed into a hole drilled into the rim of the trombone

mouthpiece as can be seen in figure 4.7. In the case of the horn, the

mouthpiece rim is not large enough to admit the transducer, and so a short

probe attachment was used. Figure 4.8 shows the horn mouthpiece with probe

microphone attached.

A second microphone—a Brüel and Kjær type 4192—was used to record the

pressure signal radiated from the bell of the instrument at a distance of one

bell radius. At this distance from the bell, the microphone picks up a signal
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Figure 4.5: A complete lip cycle for non-brassy playing. There are 22 images, spaced
equally over a complete cycle. The sequence runs left to right, top row then bottom. Note
B♭3, tenor trombone

Figure 4.6: A complete lip cycle for brassy playing. There are 22 images, spaced equally
over a complete cycle. The sequence runs left to right, top row then bottom. Note B♭3,
tenor trombone
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Figure 4.7: A hole with diameter equal to that of the PCB 106B pressure transducer
was drilled into the wall of the mouthpiece (left). The 106B could then be inserted into
the mouthpiece so that the diaphragm was flush with the interior wall of the mouthpiece
(right). The transducer was sealed to ensure there were no air leaks

which is equivalent to that obtained by recording the sound at many different

points throughout the room and integrating [Benade, 1976]. This means that

the resultant signal gives as true a representation of the instrument output as

possible.

Both the 4192 and the 106B microphones were connected to Brüel and Kjær

PULSE data acquisition hardware. PULSE is a combination of hardware and

software designed for measuring and analysing acoustic signals [Brüel and

Kjær, 2009]. In this experiment, it was used to record the pressure signals from

both microphones. No further signal processing was performed using PULSE.

Each pressure signal was exported as an Ascii text file (*.txt) and was then read

into MATLAB for analysis.

4.5 Results: pressure signals

The signals obtained using the PCB 106B inserted into the mouthpiece are

discussed in section 4.5.1 and the radiated sounds, recorded using the Brüel
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Figure 4.8: The transparent horn mouthpiece with PCB microphone attached. A small
hole was drilled in the wall of the mouthpiece and a short probe attachment inserted.
This is the view seen by the player during experiments. The light source and high
speed camera can also be seen

and Kjær 4192, are given in section 4.5.2.

4.5.1 Mouthpiece pressure signals

Figures 4.9 and 4.10 show typical mouthpiece pressure waveforms for brassy

and non-brassy playing for notes B♭3 and F3 on the tenor trombone as played

by player DMC. Each figure shows a repeat measurement, demonstrating that

the results obtained are consistent across multiple measurements. Figure 4.11

contains typical mouthpiece pressure waveforms for brassy and non-brassy

playing on the horn by player JC. This figure shows information for two notes,
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C4 and F3. There is a DC offset of approximately 2 kPa in all of the mouthpiece

pressure data.
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Figure 4.9: Mouthpiece waveforms for brassy and non-brassy playing. Two
recordings of note B♭3, player DMC, tenor trombone. There is a DC offset of
approximately 2kPa

Turning our attention first to the notes recorded on the trombone, we see

that all of the non-brassy waveforms are very similar in form. For the majority

of the cycle, the pressure is approximately constant but there is pressure drop

and then rise which lasts for approximately one third of the cycle. During this

time the pressure changes by at most 3kPa. This drop and rise in pressure is

clearly controlled by the opening and closing of the lips.

On examining the corresponding brassy mouthpiece pressures we can see

that in general terms the form of the pressure signals is broadly similar to

that of the non-brassy recordings. For most of the cycle the pressure is
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Figure 4.10: Mouthpiece waveforms for brassy and non-brassy playing. Two
recordings of note F3, player DMC, tenor trombone. There is a DC offset of
approximately 2kPa

approximately constant—apart from a few high frequency ‘ripples’—and there

is a drop and then rise in pressure that again lasts for approximately one third

of the cycle. Here, however, the change in pressure is much larger, as expected

for large amplitude playing: the pressure drop is between 8 and 10kPa, more

than double that of the non-brassy case. It should be noted that the musicians

were not playing at the very limit of amplitude—they could have played

louder—but were still well inside the brassy regime.

One of the predictions of the theory of nonlinear propagation, outlined in

section 4.2.1, is that the distortion is dependent on the maximum rate of change

of mouthpiece pressure, ( ∂Pm
∂t )max. Hirschberg et al. [1996] predicted that a

shockwave would be formed once the wave had propagated a distance
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Figure 4.11: Mouthpiece waveforms for brassy and non-brassy playing. Notes C4

(upper) and F3 (lower) on the horn. Player JC. There is a DC offset of approximately
2kPa

xs ∝
1

( ∂Pm
∂t )max

(4.5)

so that the greater the rate of change of mouthpiece pressure, the shorter the

critical distance xs becomes. Equivalently, for an instrument of fixed length,

the greater the rate of change of mouthpiece pressure, the more nonlinear

distortion there will be. It is obvious from the mouthpiece pressure signals

that the rate of change of mouthpiece pressure is much higher in the case of

brassy playing as opposed to non-brassy. The largest rise in pressure takes

approximately the same proportion of the cycle for both cases, but in the brassy

case the change in pressure is three or perhaps even four times higher. Clearly

the mouthpiece pressure signals are consistent with the nonlinear theory.
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4.5. Results: pressure signals

Examination of figure 4.11 shows that the behaviour of the mouthpiece

pressure signals for playing on the horn is very similar to that on the trombone.

The non-brassy signals have a maximum pressure drop of around 2 kPa and

the brassy signals have a correspondingly higher drop of between 6 kPa and 8

kPa. Once more, the rate of change of pressure in the mouthpiece is much

higher in the brassy case than in the non-brassy case. It is clear that for

two different musicians, playing multiple notes on two different instruments,

that there are many similarities between mouthpiece pressure signals. In all

cases, most importantly, the form of the mouthpiece pressure signal does not

change dramatically between non-brassy and brassy playing. The amplitude

increases, as expected, but in general terms the waveforms are broadly similar.

4.5.2 Radiated pressure signals

Figures 4.12 and 4.13 contain the radiated pressure waveforms corresponding

to the mouthpiece waveforms in figures 4.9 and 4.10—i.e the waveforms heard

by the listener for the notes F3 and B♭3 on the trombone, player DMC. Figure

4.14 shows the radiated sound for the notes F3 and C4 on the horn, player JC.

Again, these correspond to the mouthpiece pressure signals given in figure

4.11.

Beginning again with the measurements taken on the trombone we can see

immediately that there is a dramatic change in the form of the pressure signal

from non-brassy to brassy playing. In the non-brassy case, the maximum

amplitude of the signal is a few tens of Pa, but in the brassy case there is a

large pressure spike whose amplitude is several hundred Pa. Comparing the

relative amplitudes of the mouthpiece pressure signals to the radiated sounds,

we can see that an increase in mouthpiece pressure by factor 3 has led to an
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Figure 4.12: Radiated waveforms for brassy and non-brassy playing. Player DMC.
Notes B♭3 on the tenor trombone

increase in radiated pressure by factor 10.

Nonlinear propagation implies distortion of the pressure wave, which can

in turn lead to the formation of a shockwave. The large amplitude spikes that

are shown here are clear evidence that there is shockwave formation within

the body of the instrument, in agreement with the results of both Hirschberg

et al. [1996] and Thompson and Strong [2001].

The radiated sound pressures for the horn, shown in figure 4.14, are

once again consistent with their trombone counterparts. The differences in

amplitude between brassy and non-brassy are an order of magnitude higher

than in the mouthpiece pressure signals. However, the horn is not as loud

as the trombone—the large amplitude spikes that signal shockwave formation

have an amplitude of less than 100 Pa.

90



4.5. Results: pressure signals

0 2 4 6 8 10 12
−100

0

100

200

300

Time [ms]

R
ad

ia
te

d 
P

re
ss

ur
e 

(P
a)

0 2 4 6 8 10 12
−100

0

100

200

300

Time [ms]

R
ad

ia
te

d 
P

re
ss

ur
e 

(P
a)

Brassy − F3
Non Brassy − F3

Brassy − F3
Non Brassy − F3

Figure 4.13: Radiated waveforms for brassy and non-brassy playing. Player DMC.
Notes F3 on the tenor trombone

We now continue with a more quantitative analysis of both mouthpiece and

radiated pressure signals.

4.5.3 Spectral centroids

The spectral centroid represents the distribution of power over frequency and

as such allows us to quantitatively measure the increase in energy of the higher

harmonics. It is defined as

FSC =

n

∑
i=1

Fi Ai

n

∑
i=1

Ai

, (4.6)

where Fi is the frequency of the ith harmonic and Ai represents the amplitude
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Figure 4.14: Radiated waveforms for brassy and non-brassy playing. Player JC. Notes
C4 and F3 on the horn.

of that harmonic.

In order to calculate the spectral centroids for the notes recorded on the

trombone a piece of MATLAB software, written by David Skulina [2009] of the

University of Edinburgh, was used. The software takes a wave file (*.wav) as

its input. The user can then define the noise level in the recording and the

frequency range over which to calculate the centroid. The program uses the

native MATLAB FFT routine and then uses a numerical method to calculate

the spectral centroid. For all the calculations performed the noise floor and

frequency range were kept constant.

The spectral centroids calculated for both the mouthpiece and radiated

pressures during both brassy and non-brassy playing on the trombone are

shown in table 4.1. For the note F3 on the trombone, during non-brassy playing
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4.5. Results: pressure signals

Mouthpiece pressure Radiated pressure

Instrument Note SC(nb) SC(b) SC(b)
SC(nb)

SC(nb) SC(b) SC(b)
SC(nb)

Trombone
B♭3 304 369 1.2 716 1816 2.5

F3 251 392 1.6 562 2462 4.4

Horn
C4 425 504 1.2 559 1258 2.2

F3 422 623 1.5 655 1150 1.8

Table 4.1: Spectral centroids (SC) for both non-brassy (nb) and brassy (b) notes, calculated
for both the mouthpiece pressure and the radiated sound. The spectral centroid is given in
units of Hz. Player DMC

the spectral centroid increases from 251 Hz in the mouthpiece to 562 Hz in the

radiated sound—an increase of factor 2.2. In the case of brassy playing, the

centroid increases from 392 Hz to 2462 Hz, an increase by factor 6.3. Since

the bell of a brass instrument acts as a high pass filter [Backus, 1976] we

would naturally expect the centroid to increase between the mouthpiece and

the radiated sound. The question is: to what extent is the increase caused by

the high pass filtering of the bell and to what extent by nonlinear propagation?

Using a linear model of the bell it was possible to make an estimate of how

much of the increase in spectral centroid was due to nonlinear propagation

and how much due to the filtering effect of the bell.

4.5.4 Estimating the nonlinearity using a linear filter

Three of the non-brassy recordings on the trombone were used to calculate an

approximate ‘transfer function’ for the trombone. This was done by comparing

frequency spectra for the signals recorded in the mouthpiece to the signals

captured outside the bell. This provided a ‘linear filter’ function for the

instrument in question. This was done in the following way:
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4.5. Results: pressure signals

1. Three recordings of mouthpiece pressure and corresponding radiated

sound were made for non-brassy playing on the trombone in question.

2. Each recording had a Fourier transform applied and the amplitude of

each of the first ten harmonics noted.

3. For each pair of mouthpiece and radiated sound pressures, the corre-

sponding increase (or decrease) in amplitude of each harmonic (due to

the high pass filtering of the bell) was calculated. This was then averaged

over the three recordings. In this way, a basic linear model of the filtering

effect of the instrument was created.

Applying this linear function to the signals measured in the mouthpiece

during brassy playing meant that it was possible to make an estimation of what

the radiated sound would be should the instrument behave purely in a linear

fashion. Comparing the measured (i.e nonlinear) output of the instrument

with the estimated (linear) output allows us to make an estimate of the effect

of the nonlinearity. In order to perform this comparison, a recording was

made of the mouthpiece pressure and radiated sound during brassy playing.

These recordings were then subject to the same Fourier transform that was

applied to the non-brassy recordings. The ‘linear filter’ was then applied to

the Fourier transform of the brassy mouthpiece signal in order to calculate a

‘linear’ frequency spectrum for brassy playing. Equation 4.6 was then used to

calculate the spectral centroid. For the note F3 this calculated linear spectral

centroid was found to be 870 Hz. However, when the same calculation was

performed using the information taken from the Fourier transform of the

recorded brassy sound the centroid was 2462 Hz. It has to be concluded that

the majority of spectral enrichment corresponds to nonlinear propagation.

94



4.6. Results: lip opening area

Returning to table 4.1 we see that for the note F3 on the trombone, the

spectral centroid of the mouthpiece pressure increases by a factor 1.6 in the

transition from non-brassy to brassy playing. On the other hand, the ratio

between the corresponding radiated centroids is much larger—4.4. The note

B♭3 on the trombone shows a similar trend. This is strongly suggestive that

the primary source of the brassy sound comes not from within the mouthpiece

of the instrument, but instead comes further downstream before the sound is

radiated to the air. This quantitative analysis of the spectral centroid agrees

with our qualitative visual analysis of the pressure signals in section 4.5.1 and

section 4.5.2.

4.6 Results: lip opening area
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Figure 4.15: Lip opening areas for brassy and non-brassy playing for the notes B♭3

and F3 on the trombone. All areas are given in mm2. The data pairs share a common
time-axis but each data set has its own y-axis, effectively normalising the data for ease
of comparison. Player DMC
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Figure 4.16: Lip opening areas for brassy and non-brassy playing for the notes F3 and
C4 on the horn. All areas are given in mm2. The data pairs share a common time-
axis but each data set has its own y-axis, effectively normalising the data for ease of
comparison. Player JC

A previous study, by Bromage [2007] found that the width of the lip opening

increased quickly in the early part of the vibration cycle, and then remained at

a constant value for much of the rest of the cycle. These findings are supported

somewhat by the data shown in section 3.4. However, during this motion, the

lip opening height varied continually so that the lip opening area was also

continually changing. For louder notes, the width was constant for a greater

proportion of the cycle than for quieter playing.

Figure 4.15 shows typical lip opening areas for brassy and non-brassy

playing on the tenor trombone. Two notes are shown, B♭3 and F3, and the

player is DMC. Figure 4.16 shows the lip opening area for the notes F3 and C4

played on the horn by player JC. The brassy/non-brassy ‘pairs’ are displayed

on a common time-axis but each data set has its amplitude displayed on a

separate y-axis (brassy on the left, non-brassy on the right). This allows us to
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4.6. Results: lip opening area

effectively normalise the data for ease of comparison.

For the notes recorded on the trombone, it is immediately obvious that

there are few stark differences between brassy and non-brassy playing. At

first glance, the brassy lip opening areas are nearly identical to their non-

brassy counterparts. There are certainly none of the major differences that we

would expect to see if the lip opening area was somehow being constrained or

saturated. However, there are some subtle differences between the extremely

loud data and that recorded at a more moderate volume. In the brassy case,

the lip open area opens quicker than in the non-brassy. It then appears to close

gradually before the gradient of the curve suddenly steepens dramatically. The

non-brassy notes, however, appear to close at a constant rate.

Turning now to figure 4.16 we see that the behaviour of the horn is again

very similar to that of the trombone. The most obvious difference between

the two instruments is that for the horn the amplitude of lip opening area is

much smaller. For the note F3, the open area of the trombone players’ lips is

approximately twice that of the horn players’ during extremely loud playing.

Amplitude aside there are few differences between the data recorded on the

trombone and on the horn. Again, in the case of brassy playing the lip opening

area opens quickly and then closes at a slightly slower rate. The lips of the

horn player, however, do appear to close at a more constant rate than that of

the trombonist.

Figure 4.17 shows three recordings of the note F3 played at a non-brassy level

on the horn by player LN. Figure 4.18 shows another three recordings of the

same note by the same player, but at a brassy playing dynamic. These data sets

seem to be slightly less ‘sinusoidal’ than those of the player JC. However, these

data were recorded at a lower resolution (128x128 pixels) and it may be that
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4.7. Three-dimensional motion of the lips during extremely loud playing

this has caused some unwanted quantisation effects. Regardless of the shape

of the data, however, it is clear that the motion of the lips for player LN is

remarkably consistent. In the brassy case, in particular, the lip opening curves

are very similar in nature, and in amplitude even more so. Once again we see

no saturation or clipping of the lip opening area at any playing dynamic.

In conclusion, the only obvious difference between brassy and non-brassy

playing is that, as expected, the brassy lip open areas have a larger amplitude

than their non-brassy counterparts. For each brassy/non-brassy pair of

measurements, the waveforms of the lip open area as a function of time are

very similar, and do not show evidence of clipping, saturation, or constraint in

the brassy regime.
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Figure 4.17: Lip opening areas for three recordings of the note F3 played at a non-
brassy level on the horn. Player LN
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Figure 4.18: Lip opening areas for three recordings of the note F3 played at a brassy
level on the horn. Player LN

4.7 Three-dimensional motion of the lips during

extremely loud playing

We have already seen in section 4.6 that there does not appear to be any

radical change in the behaviour of the lip opening area during playing at

loud dynamic. However, it is clear that during playing the lips do not

move purely in one plane of motion. For this reason, an attempt was made

to discover whether or not the three dimensional motion of the lips could

make a contribution to the brassy sound. Copley and Strong [1996] used a

stroboscopic method to investigate the longitudinal motion of the lips, but

they did not consider the case of extremely loud playing. Newton [2008] used

a high speed camera to study the three dimensional motion of a single point on

a pair of lips belonging to an artificial mouth. The aim of this part of the thesis

is to investigate the three-dimensional motion of the lips of human musicians

at extremely loud volumes.
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4.7. Three-dimensional motion of the lips during extremely loud playing

y mouthpiece

lower lip

upper lip

z

x

Figure 4.19: The lips oscillate not only vertically (the y-direction) but also in the x
(from one side of the face to the other) and z-directions (in the direction of the airflow)

4.7.1 Mouthpiece with side window

Figure 4.20: Schematic of the mouthpiece with side window. The external layer of
perspex was machined down and replaced with an optical window (shown in red).
Based on a drawing by J. Chick [Chick, 2009]

A new mouthpiece was constructed with a transparent side window in

order to capture the motion of the lips in the y − z plane (as defined in figure

4.19). This mouthpiece was a modification of a commercial bass trombone

mouthpiece by Kelly [Kelly, 2009]. A schematic of the mouthpiece can be seen
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4.7. Three-dimensional motion of the lips during extremely loud playing

Figure 4.21: A photograph of the mouthpiece showing the window and PCB
microphone adaptor

in figure 4.20. The external perspex was machined down on one side of the

mouthpiece and an optical glass window fitted. This window can be seen

in red on the left hand side of figure and on the right hand side of the same

figure the window is marked with red stripes. A photograph of the finished

mouthpiece is shown in figure 4.21. The window allowed a significant portion

of the lips to be seen at an angle almost perpendicular to the players’ face, as

can be seen in figure 4.22.

The shank of the mouthpiece had an adaptor fixed onto it in order to mount

a PCB microphone. This adaptor is designed so that the pressure in the

mouthpiece can be measured directly without the need for a probe attachment.

Since horn mouthpieces are considerably smaller than their trombone coun-

terparts it was not practical to make a horn mouthpiece with similar design.

4.7.2 Measurements: filming in the y − z plane

Measurements were made on three different trombonists playing the same

tenor trombone. All of the musicians had many years playing experience.
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4.8. Results: filming in the y − z plane

Figure 4.22: A significant portion of the lips can be seen through the window

They were asked to play a variety of different pitches in pairs—one at a

mezzo forte dynamic and the second as loud as possible (i.e ffff ). A Brüel and

Kjær 4192 microphone was used to record the sound radiated from the bell

and a PCB 1016B pressure transducer was inserted into the adaptor on the

mouthpiece shank in order to capture the pressure inside the mouthpiece.

The Phantom v.4 video camera (see section 3.1) was used to film the lips

at a rate of approximately 5000 frames per second. Using the triggering

method detailed in section 5.4 the camera footage was synchronised with the

pressure signals recorded in the mouthpiece and radiated from the bell of the

instrument in order to allow comparison of the motion of the lips with the

resulting pressure.

4.8 Results: filming in the y − z plane

Figures 4.25 and 4.26 show one complete cycle of lip motion (the y − z plane,

as seen from the side) for the note B♭2 played at both mf and ffff by player JG.

The corresponding mouthpiece pressure signal is also shown. The red dot on
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4.8. Results: filming in the y − z plane

Figure 4.23: The complete experimental setup, showing the position of the
mouthpiece, camera, and microphones. For the experiments in the y − z plane, the
instrument was oriented in a more familiar manner

the pressure signal indicates the point in the cycle corresponding to the image

above. Figures 4.27 and 4.28 display the same information but for player MF.

Further examples of complete lip cycles in the y − z plane with correspond-

ing pressure signals are given in Appendix A. Figures A.1, A.2, A.5, and A.6

provide further comparison of the sideways (y-z) lip motion with mouthpiece

pressure for the notes F3 and B♭1 (the pedal note) as played by player JG, whilst

figures A.3 and A.4 show the note F3 as recorded by player MF. Comparing

all of these figures, we see that the motion of the lips is very similar for

both players. In addition, the results taken with player DMC (not shown

graphically here) are also consistent with that of JG and MF.
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4.8. Results: filming in the y − z plane

Player Note Horizontal (mm) Vertical (mm)

JG B♭1 (b) 9 9

B♭1 (nb) 7 6

B♭2 (b) 9 10

B♭2 (nb) 5 6

F3 (b) 7 8

F3 (nb) 5 6

F4 (b) 5 5

F4 (nb) 2 2

MF B♭1 (b) 9 8

B♭1 (nb) 7 6

B♭2 (b) 7 7

B♭2 (nb) 6 5

F3 (b) 5 5

F3 (nb) 3 2

F4 (b) 2 1

F4 (nb) ≤ 1 ≤ 1

DMC B♭2 (b) 8 8

B♭2 (nb) 5 5

F3 (b) 7 7

F3 (nb) 3 4

B♭3 (b) 6 6

B♭3 (nb) 3 4

Table 4.2: Estimates of the maximum distance (in mm) the top lip travels (over one
cycle) in both the horizontal (z) and vertical (y) directions for non-brassy (nb) and
brassy (b) playing. Results from all three musicians are shown. All distances are
accurate to approximately ±1mm
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~89o

High speed camera

Player Trombone

Mouthpiece

B&K
microphone

PCB microphone

Figure 4.24: A schematic of the experimental setup for ‘sideways’ (y − z plane)
filming, as seen from above.

4.8.1 Description of the motion

It is immediately clear from the footage that during playing the lips perform a

complex motion in all three dimensions. However, it appears that in all cases

it is the top lip which performs the most dramatic behaviour. If we pick a

point on the centre of the top lip and follow it across the course of a cycle

then it first protrudes ‘into’ the mouthpiece in the direction of the airflow

before arcing ‘upwards’ towards the roof of the mouthpiece. It then moves

‘back’ towards the face of the player whilst travelling ‘down’ towards its initial

vertical position. That is, it traces out an elliptical path in the mouthpiece in

agreement with the results of Copley and Strong [1996]. Figures 4.29 and 4.30

show the time-evolution of the outline of the lip for the notes B♭2 and B♭1 as

played by player JG. These four sets of data simplify the process of trying to

visualise the motion of the lips during a complete cycle.

Figure 4.31 shows how far the top lip moves in both the direction of airflow

(z) and in the vertical (y) direction during one cycle of motion for both mf

(4.31(a)) and ffff (4.31(b)) playing for the note B♭2, player JG. In the mf case,
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Figure 4.25: A complete cycle of the lip motion for the note B♭2 played at mf by player
JG as seen from the side. The corresponding mouthpiece pressure signal is shown below.
The red dot indicates the point in the cycle corresponding to the image above

Figure 4.26: A complete cycle of the lip motion for the note B♭2 played at ffff by player
JG as seen from the side. The corresponding mouthpiece pressure signal is shown below.
The red dot indicates the point in the cycle corresponding to the image above
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Figure 4.27: A complete cycle of the lip motion for the note B♭2 played at mf by player
MF as seen from the side. The corresponding mouthpiece pressure signal is shown below.
The red dot indicates the point in the cycle corresponding to the image above

Figure 4.28: A complete cycle of the lip motion for the note B♭2 played at ffff by player
MF as seen from the side. The corresponding mouthpiece pressure signal is shown below.
The red dot indicates the point in the cycle corresponding to the image above
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4.8. Results: filming in the y − z plane

Figure 4.29: Two figures showing the time evolution of the top lip for non-brassy (left)
and brassy (right) playing. Note B♭2, player JG. The coloured line shows the outline
of the top lip at various stages in the cycle. The order through the cycle is red, orange,
green, turquoise, blue, purple, white

the maximum horizontal distance moved by the lip is approximately 5 mm,

and in the vertical it is 6 mm. In the ffff case, the lip moves almost twice as far,

with horizontal and vertical distances of 9 and 10 mm. This is in agreement

with the lip opening area results, where the amplitude of the motion increased

with amplitude.

Table 4.2 collects the (approximate) maximum horizontal and vertical dis-

placements during one cycle of the top lip for all of the notes played by the

three musicians; JG, MF, and DMC. Tracking an individual point on the lip

over a whole cycle was difficult, and as such the values are accurate to only

±1 mm. In all cases, the horizontal distance travelled is within 1 mm of the
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4.8. Results: filming in the y − z plane

vertical distance travelled within the same cycle. Additionally, as expected the

amplitude of the motion increases with amplitude and decreases with pitch.

So, can this dramatic motion of the lip account for the brassy sound at ffff

level? Comparing the non-brassy lip motion for the pedal note (B♭1) as played

by JG and MF (see table 4.2 and figure A.5) with the brassy lip motion of the

notes F3 and F4 as played by the same players, as well as player DMC, we

see that the distance travelled by the lip is larger (in some cases, considerably

larger) in the case of the non-brassy low note than it is in the brassy higher

notes. Comparing the left hand side of figure 4.30 with the right hand side

of figure 4.29 should reinforce this idea. Since the low note was audibly non-

brassy and the higher ones played as loudly as possible it seems very unlikely,

in the light of these data, that the motion of the lips can account for the brassy

sound.

4.8.2 Constraint of the lips

It should be noted that the grey area at the top and bottom of the sideways lip

motion images is not the edge of the mouthpiece, but is the edge of the optical

glass window. When the lips appear to ‘disappear’ behind this edge they are

not necessarily coming into contact with the walls of the mouthpiece. Figure

4.32 shows the relationship between the edge of the window and the internal

walls of the mouthpiece. Re-examining figure 4.22 puts this information

further in context. With this in mind, there does not seem to be any evidence of

constraint of the lips by the mouthpiece at any point for any playing dynamic.

This suggests that it is not a constraint of the lips by the mouthpiece which is

a primary cause of the brassy sound.
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4.8. Results: filming in the y − z plane

Figure 4.30: Two figures showing the time evolution of the top lip for non-brassy (left)
and brassy (right) playing. Note B♭1, player JG. The coloured line shows the outline
of the top lip at various stages in the cycle. The order through the cycle is red, orange,
green, turquoise, blue, purple, white

4.8.3 Extra volume flow

It is clear from figures 4.25 to 4.28 and A.1 to A.6 that a significant portion

of the lip ‘wobbles’ in the mouthpiece during the middle of the cycle, when

the lip is furthest from its ‘fully closed’ position. One might expect that this

motion would cause a significant volume flow in the mouthpiece. However, on

examination of the corresponding pressure signals, we see that in the middle

of the cycle, when the largest part of the lip is moving, the pressure in the

mouthpiece is almost constant. In fact, the pressure in the mouthpiece appears

to be controlled purely by the opening and closing parts of the lip motion.

This is further supported by the success of lip models using only one or two

degrees of freedom. If this motion were of large significance we would not
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4.8. Results: filming in the y − z plane

(a) non-brassy (b) brassy

Figure 4.31: Estimates of how far the lip travels in both the horizontal (z) and vertical
(y) directions for non-brassy (4.31(a) and brassy (4.31(b)) playing. The three images
show how far the lip moves in the horizontal (middle) and vertical (right) directions
from the ‘fully closed’ position (left). These images correspond to images 1, 3, 5 from
the cycle in figures 4.25 and 4.26. Player JG, note B♭2

expect models which did not incorporate it to produce realistic results.

Accordingly, we can conclude that whilst the motion of the lips during

both mf and ffff playing is extremely complicated, by far the most significant

features of the motion are those which govern the lip opening, and hence the

volume flow. Once the lips have opened (or closed) the large motion of the

extremities of the lips does not appear to have a significant effect on the sound

that is produced.

4.8.4 Wider angle filming

For the final part of the experiments with ‘sideways’ filming the camera was

rotated around to approximately 55◦, as can be seen in figure 4.33. This meant

that it was possible to see some aspects of the opening area (x − y) and some

of the sideways motion (y − z) at the same time. Figures 4.34 and 4.35 show a

complete cycle of the lip motion—along with mouthpiece pressure—for both

mf and ffff playing of the note B♭2, player MF.
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4.8. Results: filming in the y − z plane

Figure 4.32: Looking ‘into’ the mouthpiece with side window. The edge of the lip
image (shown in green) corresponds to the edges of the optical window, not the edge of
the mouthpiece

These images make it possible to gain a qualitative understanding of the

full motion of the lips during brass instrument playing in a manner that is not

possible by examining only ‘front’ or ‘sideways’ photography. It can be seen

that in both mf and ffff playing the outer parts of the lips undergo a particularly

complicated motion. It appears that the centre and the sides of the top lip are

out of phase with each other; the top lip is moving upwards whilst the sides

move down, and vice-versa. Trying to incorporate the full motion of the lips

into a physical model would seem to be particularly difficult. However, it can

also be seen that the lip opening area behaves in approximately the same way

for both playing dynamics. Since the opening area controls the air flow into the

instrument then it is not necessarily a requirement of a simulation to reproduce

the full three-dimensional lip motion. A model that captures the main features

of the lip should be satisfactory in producing a realistic model.
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4.8. Results: filming in the y − z plane

B&K
microphone

~55o

PCB microphone

Player Trombone

Mouthpiece

High speed camera

Figure 4.33: A schematic of the experimental setup for ‘sideways’ filming at a wider
angle, as seen from above

4.8.5 Comparison with earlier work

Newton [2008] was able to observe the motion of a pair of artificial lips as

viewed from the side. He found that a point on the outer edge of his model

travelled in an approximately elliptical shape. This is in agreement with the

results presented here, and also of Copley and Strong [1996]. He was also able

to use MATLAB to track a small dot that was painted onto the lip. Adapting

his method for use on human players would allow a more qualitative analysis

of motion in the y − z plane than has been possible here.

In a study of flute control parameters, Fabre et al. [2008] used a mirror to

capture both the ‘straight on’ and ‘sideways’ behaviour of the lips at the same

time. It would perhaps be of benefit to perform a similar experiment with the

lips of brass players. However, this may be difficult to perform because of the

small size of most brass instrument mouthpieces.
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Figure 4.34: A complete cycle of the lip motion for the note B♭2 played at mf by player
MF filmed from an angle of approximately 55◦. The corresponding mouthpiece pressure
signal is shown below. The red dot indicates the point in the cycle corresponding to the
image above

Figure 4.35: A complete cycle of the lip motion for the note B♭2 played at ffff by player
MF filmed from an angle of approximately 55◦. The corresponding mouthpiece pressure
signal is shown below. The red dot indicates the point in the cycle corresponding to the
image above
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4.9. Brassy playing: using an artificial mouth

4.9 Brassy playing: using an artificial mouth

An attempt was made to use the artificial mouth (see section 3.5) as a

way of exciting an instrument at a brassy level. Unfortunately this proved

unsuccessful. Firstly, the air compressor used was not capable of producing

a suitably high pressure in the ‘mouth’ in order to produce a suitably loud

sound. The Air Control Industries Ltd 8MS11 0.25kW air pump that was

used could only produce a maximum pressure of around 1kPa. Examining the

typical mouthpiece pressures of human players suggests that a value of several

kPa is required to produce a significantly brass sound. However, switching to

a different, more powerful, source of compressed air was also not sufficient

to produce a brassy sound on the artificial mouth. The artificial mouth is

designed such that once a playable embouchure has been found, it will remain

permanently in that embouchure. When a human musician wishes to change

from non-brassy to brassy, they do more than just ‘blow harder’. They also

change the shape and tension of their lips in order to form an embouchure

suitable to maintain a self-sustained oscillation at the loudest amplitudes.

During a crescendo they continually make adjustments in order to maintain

the oscillation.

Currently, if a stable regime of oscillation is obtained using the artificial

mouth and the pressure subsequently increased then it is not possible to

adjust the embouchure to maintain the oscillation. Instead, the sound becomes

‘airier’ until the oscillation collapses—the lips continue to vibrate, but they do

not do so in a musical manner: the sound heard is that of the lips striking

one another whilst air is forced between them (a child would perhaps describe

such a sound as a ‘raspberry’). In order to successfully obtain a brassy sound
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using the artificial mouth it will be necessary to modify the design in order to

allow modification of the embouchure quickly and easily. In order to produce

a realistic crescendo using the artificial mouth a way of controlling and altering

the embouchure smoothly during playing must be found.

4.10 Brassy playing: conclusions

Recordings of the pressure in the mouthpiece of a tenor trombone and a horn

during brassy and non-brassy playing were made using a low sensitivity

microphone. Results were consistent between players, instruments, and

pitches. As expected, the only significant change between brassy and non-

brassy playing was the maximum rate of change of mouthpiece pressure. This

is in agreement with the results of Hirschberg et al. [1996].

The form of the corresponding external pressure signals, however, changed

greatly with dynamic level. In the case of extremely loud playing there is

clear evidence of shockwave formation within the body of the instrument.

Calculation of the spectral centroid of both mouthpiece and radiated pressures

reinforces this conclusion.

The lip opening area was measured using a high speed video camera for all

of the players and instruments. The opening area increased in amplitude for

louder playing dynamic and decreased with increasing pitch. These variations

are to be expected. There were no unusual features of the lip motion at any

playing level and no evidence of lip saturation or constriction. It therefore

has to be concluded that the brassy sound is not generated by a change in the

motion of the lips during extremely loud playing.

A new trombone mouthpiece with side window was used to record the
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4.10. Brassy playing: conclusions

motion of the lips in the y − z plane for both brassy and non-brassy playing.

The top lip performs a more complicated motion than the bottom lip. Analysis

shows that the top lip travels an approximately elliptical path and protrudes

into the mouthpiece as far as 1cm in both y and z directions. Motion of the lip

in this plane does not appear to contribute significantly to the creation of the

brassy timbre.
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Chapter 5

The behaviour of the lip reed

during the starting transient

‘‘Begin at the beginning’, the King said, very gravely, ‘and go on till you come to the

end: then stop’’

—ALICE’S ADVENTURES IN WONDERLAND

5.1 The starting transient

One sound that will be familiar to any student of the brass wind instruments is

the ‘fluffed’ or ‘split’ note, where the musician fails to achieve a clean attack on

the note chosen. Brass musicians spend many hours learning to consistently

‘hit’ the correct note [Chick, 2009] and the ease with which a note can be

started on a particular instrument is often used by musicians as an indicator of

instrument quality. In addition, the starting transient is of great importance in

determining the character of an instrument, as established by Luce and Clark

[1967] in their classic study of brass instrument tones. It is also known that the

starting transient is required by the listener in order to differentiate between
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5.2. Starting transients: theory

the sounds made by two different instruments [Grey and Moorer, 1977]. In

short, the starting transient of a note is of critical importance to both the brass

musician and to the listener. However, there have been very few publications

of research into the starting transients of the brass wind instruments. The work

presented here is a continuation of some preliminary studies performed by

Bromage [2007] at the University of Edinburgh.

A typical starting transient on a brass wind instrument has a duration

of approximately 50ms. The work here examines the relationship between

the motion of the lips of the player, the pressure in the mouthpiece of the

instrument and the sound as heard by the listener during the first 100ms of

the sounding of a note on a number of different brass instruments.

5.2 Starting transients: theory

A brass instrument tone is initiated by a periodic opening and closing of the

player’s lips. The frequency of this initial lip vibration is controlled by the

player’s choice of embouchure, which determines the mechanical resonance

behaviour of the lips. The pressure pulse created by the first cycle of opening

and closing propagates to the bell of the instrument, where some of the

sound is radiated into the atmosphere and some is reflected back down the

instrument.

If the player has initiated the lip vibrations at the correct frequency the

reflected sound should arrive with the appropriate phase to reinforce the lip

vibrations. If the reflected wave is sufficiently out of phase with the player’s

lips it is possible that the note will be ‘split’ and that—albeit, very briefly—

the wrong note will sound. Less disastrous mismatches of phase may be
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5.3. Starting transients: experimental setup

responsible for modifications of the transient waveform, such as the amplitude

‘blips’ reported by Luce and Clark [1967].

It is characteristic of notes played on orchestral brass instruments that the

lip resonance frequency is normally close to a high number mode of the air

column. For example, when the note F3 is played on a horn in B♭-basso, the

lip frequency is close to the sixth mode of the air column. This means that the

time taken for the initial disturbance to propagate down the tube and return

to the lips is approximately six times the period of the note. Only after the

first six cycles of the lips can the acoustic resonance of the tube couple with the

lips to establish a stable regime of oscillation locked to the air column mode

frequency.

For players of long coiled or folded brass instruments, such as the horn, the

radiated sound from the bell can reach the player’s ear before the reflected

pressure wave returns back along the instrument to the mouthpiece. It is not

currently known whether this time delay between the auditory and acoustic

feedback signals has a significant effect on the player’s control of the starting

transient.

5.3 Starting transients: experimental setup

The following sections describe the experimental apparatus and procedure

used for experiments on the starting transient.

5.3.1 Instruments

Three instruments were used for the experiments described in this part of

the thesis: a natural horn, a tenor trombone, and a bass trombone. These
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5.4. Experimental setup

instruments were chosen because they allow the musician to sound the same

pitch on the same instrument in multiple ways. That is, the same pitch may

be sounded but using different lengths of tubing. For the experiments using

trombones, the instrument length was altered by adjusting the instrument

slide and/or trigger mechanism whilst the length of the horn was changed

by the use of two different crooks; B♭-alto (2.7m horn) and B♭-basso (5.6m)

respectively. The natural horn and crooks used can be seen in figure 5.1. Six

different musicians were asked to participate: three horn players, two tenor

trombonists and one bass trombonist. This meant that it was possible to

compare features across both different performers and different instruments

playing the same note. As in the rest of the thesis, all the musicians were either

professionals or skilled amateurs with many years orchestral experience.

Three different pitches were chosen: F3, B♭3, and B♭4. These were selected

as being comfortable to play in different ways on all three instruments. The

experiments were repeated with several different players on each instrument

in order to identify common features. Some measurements were also made of

the note B♭2 on the bass trombone.

5.4 Experimental setup

In order to gain optical access to the lips, the transparent trombone and horn

mouthpieces detailed in section 3.1.1 were again put to use. The Phantom v4.1

camera and Schott KL1500 light source (see section 3.1) were used to record

the motion of the lips.

A hole was drilled into the side of the trombone mouthpiece and a PCB 106B

microphone inserted such that the diaphragm was flush with the inside wall
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5.4. Experimental setup

Figure 5.1: The natural horn used for experiments on the starting transient. This
instrument has no valves. Instead, the length of the instrument can be altered by the
use of crooks of different lengths. The two crooks pictured here are a B♭-alto crook (a
2.7m long horn) and a longer B♭-basso crook (5.6m long horn)

of the mouthpiece. Since the dimensions of the horn mouthpiece are smaller

than that of the microphone, a smaller diameter hole was drilled and a short

probe attachment used to connect the 106B to the mouthpiece. The sound

radiated from the bell of each instrument was recorded using a Brüel and Kjær

4192 microphone. Both the PCB and Brüel and Kjær microphones were once

again connected to the PULSE acquisition hardware (see section 4.4.2). The

experimental setups for the trombone can be seen in figure 5.2.

In order to successfully determine the relationship between the motion of

the lips, the pressure in the mouthpiece, and the sound heard by the listener

during the starting transient it was essential that all three signals were correctly

synchronised. This synchronisation was performed using the process outlined
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5.4. Experimental setup

Figure 5.2: The experimental setup for measurements of the starting transient on a
trombone. The motion of the lips was captured by the high speed camera, whilst the
pressure in the mouthpiece and radiated sound were simultaneously recorded.

in section 5.4.1.

5.4.1 Starting transients: synchronisation

The capture process on the high speed camera was triggered using a BNC

Model 500 Pulse Generator. The signal from this generator was simultaneously

used to trigger the recording of the mouthpiece and radiated sound pressures

by the PULSE acquisition hardware. The trigger signal itself was also recorded

by PULSE. Both PULSE and the high speed camera were configured to use ‘pre-

trigger’ in order to simplify the experimental process. In order to clarify this

fully, it is necessary to explain how the high speed camera works.
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5.4. Experimental setup

PC 

Camera

PC 

PULSE

PCB microphone 4192 Microphone

Pulse generator

Camera

Audio signals

Figure 5.3: The synchronisation process for experiments on the starting transient.
The high speed camera and audio signals were synchronised by using a pulse generator
to trigger the capture process. The trigger signal was also recorded to facilitate the
synchronisation

5.4.2 The Phantom v4.1 camera

The Phantom v4.1 camera is controlled by a PC with the Phantom camera

software installed on it, to which it is connected via firewire. The rate of data

communication between PC and camera is not fast enough to allow recordings

to be saved directly on to the computer hard drive. Instead, the camera has a

buffer which it uses to temporarily store the video that it captures. The buffer

has a limited size and so, at the frame rates and resolutions used in the thesis

(typically 5000 frames per second at 256x128 pixels) it cannot capture more

than approximately 1.2s of footage.

Since the capture time of the camera is limited in this fashion, it was not

practical to trigger a recording and then ask the musician to begin playing.

124



5.4. Experimental setup

However, one feature of the camera is that it continually captures the video

signal, and then overwrites the buffer as necessary. So, there is, in effect,

always 1.2s worth of video stored on the camera. 1.2s after the recording is

triggered, the camera stops writing to the buffer and saves the data which is

stored. This data can then be saved onto the hard drive of the control PC.

Using the pre-trigger function, however, the user can control how much of

the signal is saved before the trigger is activated. Set the pre-trigger to 0.3s, for

example, and 0.3s of the data recorded before the trigger will be kept whilst

the camera then records for another 0.9s after receiving the trigger signal, for a

total recording time of 1.2s.

The PULSE data acquisition software can be configured in a similar way.

It was decided that a pre-trigger time of 0.5s would be used on the audio

recordings whilst the camera was set to a pre-trigger time of, typically, 0.4s.

Unfortunately, the camera software quantises the allowed pre-trigger times

depending on the resolution and frame rate chosen, and so an appropriate

pre-trigger had to be chosen for each configuration. The total audio capture

time of PULSE was chosen such that the total length of audio signal captured

was always longer than the total video capture time in order to ensure that no

data was lost.

5.4.3 The recording process

In practice, an experimental measurement ran as follows:

1. The apparatus was set up, light source adjusted and camera focused to

obtain a clear image using the camera preview.
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5.5. Starting transients: analysis procedure

2. A suitable pre-trigger time was set using the camera software based on

the resolution and frame rate required.

3. The musician began playing the desired note.

4. As soon as the experimentalist heard the start of the note,the capture pro-

cess was triggered manually using the BNC Model 500 Pulse Generator.

As long as the experimentalist reacted within the pre-trigger time of the

camera then all of the starting transient was captured on both camera

and PULSE computer.

Since the trigger signal was captured by PULSE—and the pre-trigger times

of both audio signals and high speed camera controlled—it was then a simple

process to identify at which point in the audio signal the camera was triggered

and thus to synchronise all three sets of data. This synchronisation process

was carried out using MATLAB.

5.5 Starting transients: analysis procedure

The high speed camera footage was once again split into individual frames and

the ‘binarisation’ process detailed in section 3.2.1 applied in order to extract

the relevant lip opening area information. These data were then synchronised

with the audio signals taken during the experimental procedure. All three data

sets were then imported into MATLAB for processing and analysis.

5.5.1 Instantaneous lip opening area ‘frequency’, ν

As a brass musician starts to play a note, he (or she) must cause his lips to

vibrate at some initial frequency which matches the frequency of the note
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5.5. Starting transients: analysis procedure

that they are aiming to produce. In order to examine how effective the

musicians were in this respect the ‘instantaneous’ lip opening area frequency

was calculated for each data set, as explained below.

It is expected that the time period that it takes for the lips to open and close

again will vary during the starting transient. If no two cycles of motion are

identical then the lip opening area will not be a periodic quantity. Is it possible

to assign a ‘frequency’ to a non-periodic signal? However, noting the fact that

each cycle of the motion has an easily identifiable point—that of maximum

lip opening area—then we can define a ‘pseudo-frequency’ for an individual

cycle. Measuring the time period between successive maxima of lip opening

area and taking the reciprocal yields a quantity measured in s−1 (Hz) , which

we shall make use of, and call the ‘instantaneous’ lip opening area frequency,

ν. A common technique in signal analysis is to use the rate of change of phase

as a way of calculating an instantaneous frequency, however this is a rather

more complicated method than is necessary here.

In order to calculate ν accurately, a MATLAB script was written that could

detect local maxima in the opening area data. The time period between peaks

could then be calculated and ν found. However, the accuracy of this process

was limited by the sample rate of the Phantom v4.1 high speed camera. In

order to remove unwanted quantisation effects (an artifact of aliasing) and

improve the accuracy of the calculation, the opening area data was re-sampled

(increased) using an anti-aliasing (low pass) FIR filter. The filter uses n points

on either side of the current sample in order to perform a linear fit using a least-

squares method. In order to maximise the accuracy of the resampling process

n was set to 10. To ensure that the re-sampling did not significantly alter the

data, a careful examination of the original video footage, in comparison with
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5.5. Starting transients: analysis procedure

both the original and re-sampled lip opening area data, was made. It was

found that it was possible to increase the sampling rate of the data by a factor

of five without removing any significant information. At this increased sample

rate the aliasing effect was greatly reduced and so a satisfactory calculation of

ν could be made. The re-sampling process and calculation of ν are shown in

figures 5.4 and 5.5. The accuracy of the re-sampling process can be seen by

comparing the overlap between the raw (blue) and re-sampled (green) data

points.
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Figure 5.4: At the original frame rate of the camera, the peak detector could find only
one of the original data points (marked with a black rectangle). The location of these
points relative to the ‘true’ peak caused unwanted quantisation effects. Re-sampling
the data (green line) allowed a more accurate approximation to the ‘true’ peak to be
made (red rectangle)
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Figure 5.5: The re-sampling process did not change the form of the data significantly,
even when re-sampled by a factor five

5.6 Starting transient: results

Acoustic Pulse Reflectometry (APR) is an experimental technique which can

be used to deduce some of the physical properties of a brass instrument.

An acoustic pulse is injected into the instrument via loudspeaker and any

reflections recorded using several microphones. Comparing the reflections to

the initial impulse makes it possible to calculate the internal bore profile of

the instrument, calculate the acoustic impedance, or even detect leaks [Kemp,

2002]. Here, however, we are concerned only with determining how long it

takes for an acoustic pulse to travel the length of an instrument and return to

the mouthpiece.

The first instrument used in this part of the thesis was a 5.6m long natural
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Figure 5.6: Reflection function of a 5.6m long horn in B♭-basso, measured using an
acoustic pulse reflectometer. It can be seen clearly that the time taken for the first
reflection to return to the input of the instrument is 32ms

horn, using a B♭-basso crook. Figure 5.6 shows the reflection function of this

instrument measured by APR. It can be seen clearly that it takes approximately

32ms for an acoustic signal to travel the length of the instrument and back

again due to the reflection at the bell. Therefore, as a crude approximation,

when examining the sound radiated from the 5.6m horn during the starting

transient an initial disturbance at the bell is expected 16ms after the start of

the note. After 32ms, the amplitude of the pressure signal in the mouthpiece

should grow rapidly as the returning wave begins to reinforce the oscillation

of the lips.
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5.6.1 Note F3, 5.6m horn in B♭-basso
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Figure 5.7: Starting transient for the note F3 on the 5.6 m horn in B♭-basso. The lip
opening area, mouthpiece pressure and radiated sound are shown. Player LN

Figures 5.7, 5.8 and 5.9 show typical recordings of the starting transient of

the note F3 played on the 5.6 m horn in B♭-basso by three players; LN, JC, and

HP. Figure 5.10 displays all three of these data for ease of comparison between

the different players.

In all three cases, it can be seen quite clearly that as the lips begin to open,

there is an initial pressure rise inside the mouthpiece. At this stage there is, as

expected, no sound radiated from the instrument. Approximately 16ms later

that there is a ‘blip’ in the sound radiated from the instrument, as predicted

using the information recorded using APR. After 32ms, both lip open area and
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Figure 5.8: Starting transient for the note F3 on the 5.6 m horn in B♭-basso. The lip
opening area, mouthpiece pressure and radiated sound are shown. Player JC

mouthpiece pressure grow rapidly in amplitude as the reflections from the

bell reach the mouthpiece and reinforce the oscillation. Once these reinforced

oscillations reach the bell of the instrument after 48ms the radiated pressure

also increases in amplitude. The note F3 is the sixth mode of the air column

for the 5.6m horn and as such it can be seen that there are six cycles of motion

before the air column provides feedback to the motion of the lips. These data

therefore reinforce our theoretical model of what happens during the starting

transient of a note on a brass instrument.

The behaviour of the recording made by player LN is particularly inter-

esting. For the first six cycles of the lip oscillation the amplitude of both

lip open area and mouthpiece pressure are extremely small. Once the initial
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Figure 5.9: Starting transient for the note F3 on the 5.6 m horn in B♭-basso. The lip
opening area, mouthpiece pressure and radiated sound are shown. Player HP

pressure pulse reaches the bell of the instrument the radiated sound pressure

is also correspondingly small. Once the acoustic feedback begins after 32ms,

however, the behaviour is startling, with rapid growth of both open area

and mouthpiece pressure. It appears that this particular combination of

embouchure and mouth pressure chosen by the player was not capable of

sustaining the lip vibration in the absence of feedback from the instrument.

In contrast, the lip vibration of player JC grows in amplitude through the

first six cycles of oscillation. Since the instrument, mouthpiece, and pitch

are the same in all three cases, variations must be purely due to playing

technique. It has been reported that saxophonists are able to tune their vocal

tract resonance to support the production of particular notes [Chen et al., 2008].
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Figure 5.10: three recordings of the note F3 on the 5.6m horn in B♭-basso, played by
three different performers; LN, JC, and HP. The units on the axis are arbitrary and the
data have been offset vertically and rescaled in order to facilitate comparison

It may be that player JC was making use of a similar technique to sustain

the oscillation before the acoustical feedback from the instrument began. The

signals again grow noticeably in amplitude after 32ms.

Figure 5.9 shows the starting behaviour of the same note as played by player

HP. Once more we see that the transient behaviour is much the same of that

of players LN and JC—there is a blip in the radiated sound 16ms after the lips

begin to open and the amplitude of the lip opening area increases once the

first pulse returns to the mouthpiece after 32ms. However, it is also noticeable

that the lip open area of player HP is much smaller than that of LN or JC.

As mentioned in section 3.4 this player was not entirely comfortable with the
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Figure 5.11: Instantaneous lip opening area frequency (ν) during the starting
transient. The target frequency is the frequency of the target note, with A = 440Hz.
Note F3, B♭-basso horn. Player LN

setup, and so it may be that the experimental conditions were not suitable for

extracting the normal behaviour of the lips of player HP.

Figures 5.11, 5.12, and 5.13 contain the calculated instantaneous lip opening

area frequencies, ν, for the note F3 as played by players LN, JC, and HP on

the 5.6m horn in B♭-basso. It is immediately clear that for each of the three

musicians the behaviour of ν during the starting transient is very different.

The lip oscillation of player LN begins at a frequency of approximately

187Hz, corresponding to a pitch 125 cents higher than the target frequency

of 174Hz (A = 440Hz). The lip frequency then decreases rapidly during

the next cycle, and the next three cycles are all within 30cents of the target

frequency. Suddenly the lip frequency increases rapidly again for one cycle

before dropping down below the target frequency. ν continues to oscillate

around the target frequency, with the ‘amplitude’ of each oscillation decreasing

135



5.6. Starting transient: results

0 50 100 150 200
120

130

140

150

160

170

180

190

200

210

220

Time (ms)

F
re

qu
en

cy
 (

H
z)

Instantaneous Lip Opening Area Frequency, note F3, Bb−basso, Player JC

 

 

Target Frequency
Lip Area Frequency

Figure 5.12: Instantaneous lip opening area frequency (ν) during the starting
transient. The target frequency is the frequency of the target note, with A = 440Hz.
Note F3, B♭-basso horn. Player JC

until around 65ms into the motion where the lip oscillation frequency remains

approximately constant. It is interesting to note that whilst there seems to

be distinct variation in the value of ν above the target frequency there are

fewer variations below the target. Does the player somehow limit the lowest

frequency at which their lips would vibrate? It should also be noted that

during the steady state oscillation the instantaneous value of the lip frequency

is slightly higher than the target. This may indicate that the instrument was

not perfectly tuned to A = 440Hz.

Examining the instantaneous lip opening frequency of player JC we see that

there are some similarities to that of player LN, but also some differences.

JC’s initial lip vibration is almost exactly the same as the target frequency.

However, the second cycle of oscillation is approximately 10Hz (96 cents)

higher than the target. ν then decreases, as in the case of player LN, but in
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Figure 5.13: Instantaneous lip opening area frequency (ν) during the starting
transient. The target frequency is the frequency of the target note, with A = 440Hz.
Note F3, B♭-basso horn. Player HP

this case seems to ‘overshoot’ the target frequency, again by around 100 cents.

The lip frequency then increases well above the target frequency and then

continues to oscillate around the target. Interestingly, the ‘steady state’ part

of the motion after around 50ms of the motion does not remain constant as

in the case of LN. Instead, the oscillation continues but with a much smaller

amplitude than during the initial transient. It can also be seen that the highest

values of ν are lower for JC than LN. However, the lowest values of the same

variable are also lower for player JC.

Player HP, finally, demonstrates completely different behaviour to that of

either player LN or JC. The lip motion of this player begins at around 190Hz,

a full 150 cents above the target frequency, and then increases to over 200Hz,

240 cents higher than the note F3 aimed for. Over the following 50ms the

instantaneous lip opening frequency tends to decrease until only slightly
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higher than the target frequency. It then remains approximately constant at

a value 2 or 3Hz higher than the target. Only once during the entire recording

does the value of ν drop more than 1Hz below the target frequency.

Comparing and contrasting the behaviour of all three players it is clear

that whilst there are many similarities between the different players, there

are also many dramatic differences. The question remains, however, as to

whether or not these differences are of importance to either the musician or

to the listener. Listening purely to the radiated sound suggests that all three

notes are satisfactory; there are no ‘splits’ or ‘blips’. It is possible that the

behaviour of player LN, where the player is unable to sustain the oscillation

without feedback, is not desirable whereas the behaviour of player JC, where

the player manages to obtain the correct frequency of vibration and sustain

it is an example of good technique. However, it may also be possible that

player LN uses the instrument to ‘do the work’ and in so doing uses the lips

efficiently whilst player JC has to work harder than is necessary. Similarly,

comparing the behaviour of the instantaneous lip opening area frequency for

all three players shows three different behaviours. Whilst all players seem to

begin their oscillation slightly higher than the target frequency, that is where

the similarities end. Player HP has lips that oscillate well above the target

frequency whilst LN and JC produce lip opening areas that oscillate around

the target pitch. Since all three notes sound satisfactory to the listener it may be

that no single method is preferable. Repeat measurements of many players—

at many different levels of skill—are required before any firm conclusions can

be drawn.
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Figure 5.14: Starting transient for the note F3 on the 2.7 m horn in B♭-alto. The lip
opening area, mouthpiece pressure and radiated sound are shown. Player LN

5.6.2 Note F3, 2.7m horn in B♭-alto

Figures 5.14, 5.15, 5.16 and show typical recordings for the note F3 on the 2.7m

horn in B♭-alto for players LN, JC, and HP. These data also follow the pattern

of initial small amplitude disturbance followed by rapid amplitude growth as

the initial disturbance is reflected back to the lip reed. In this case the time for

the reflection to return is around 16ms. This behaviour is to be expected for

this much shorter instrument. The note F3 corresponds to the third mode of

the air column for the 2.7m horn and we see that there are three cycles of lip

motion before the acoustic feedback develops.

Figures 5.17, 5.18 and 5.19 contain the calculated values of ν for these data.
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Figure 5.15: Starting transient for the note F3 on the 2.7 m horn in B♭-alto. The lip
opening area, mouthpiece pressure and radiated sound are shown. Player JC

The behaviour of the lip frequency of player LN here is very similar to that

of player HP when playing the note F3 on the B♭-basso horn (see figure 5.13),

with an initial frequency much higher than that of the target. The oscillation

then decreases in frequency, but never drops below the target pitch of 174Hz.

Again, the steady-state value of ν for this player is several Hz higher than

the target, perhaps indicating that the instrument was out of tune. However,

since this behaviour has been observed twice on this player it may be that the

instrument is not out of tune, but rather evidence of something else. Playing

above the resonance frequency of the instrument is indicative of the behaviour

of an outward-striking reed [Richards, 2003] so it may be that the embouchure

chosen by player LN is outward-striking in nature. It would be interesting to
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Figure 5.16: Starting transient for the note F3 on the 2.7 m horn in B♭-alto. The lip
opening area, mouthpiece pressure and radiated sound are shown. Player HP

use the method of Newton et al. [2008] to determine the nature of this player’s

embouchure in this case.

Player JC, on the other hand, starts his lip vibration at a much lower

frequency than the target. It then rapidly increases until over 30Hz above

the target pitch and then decreases. As in the previous note the value of ν

seems to oscillate around the target value from cycle to cycle. Finally, the

behaviour of the lips of player HP seems more similar to that of player LN

than that of player JC. ν remains well above the target frequency for the first

five cycles of the motion and then becomes approximately constant during

the steady state. Note that once again there are very few cycles for which

the oscillation frequency is lower than the target frequency. It appears that
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Figure 5.17: Instantaneous lip opening area frequency (ν) during the starting
transient. The target frequency is the frequency of the target note, with A = 440Hz.
Note F3, B♭-alto horn. Player LN

player HP demonstrated the most consistent behaviour of instantaneous lip

opening area frequency during performance of these two notes. In both

cases, this player kept the oscillation frequency of the lips higher than the

target frequency for the vast majority of the transient. This player is a very

experienced professional and as such it is not unexpected that the behaviour

of his lips is consistent. On the other hand, as noted previously this player

was not entirely comfortable with the experimental process and so it may

be that the lips of this musician would behave differently under ‘normal’

circumstances. However, the lips of player LN also very rarely oscillate at a

frequency lower than the target frequency. In order to draw firm conclusions

about the desirability of different transient behaviour it would be necessary

to repeat these measurements with many different players. Questioning the

musicians about what they believe they are trying to do during the transient
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Figure 5.18: Instantaneous lip opening area frequency (ν) during the starting
transient. The target frequency is the frequency of the target note, with A = 440Hz.
Note F3, B♭-alto horn. Player JC

may also aid in this respect; perhaps there are different schools of thought,

practice, or training which may lead to differences between the transient

behaviour of the lips.

However, even though it has been hard to make definitive conclusions about

the behaviour of the lips of brass players during the starting transient, the

information obtained will still be of great use as a guide when creating a

physical model of the lips. There have, until now, been very few measurements

of what happens to the lips during the starting transient. Now that these

preliminary measurements have been completed it will be possible to compare

the behaviour of computational models and see whether or not the behaviour

obtained is realistic.
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Figure 5.19: Instantaneous lip opening area frequency (ν) during the starting
transient. The target frequency is the frequency of the target note, with A = 440Hz.
Note F3, B♭-alto horn. Player HP

5.6.3 Notes F3 and B♭3, tenor trombone

Recordings were also made on a tenor trombone, similar in length to the B♭-

alto horn. In this case, the player was asked to play the same pitch twice, but

with the slide of the instrument in two different positions. For the note F3

measurements were taken in first and sixth position, and for the note B♭3 in

first and fifth position. Figures 5.20 to 5.23 show the transient behaviour of the

note F3 played by player TJ in first and sixth positions, whilst figures 5.24 to

5.27 show the same information but for the note B♭3 in first and fifth positions.

Consider first the note F3. With the trombone in first position, the rein-

forcement of all three signals can be seen as expected after three cycles (F3

is the third mode of the instrument in this instance). The amplitude of the

lip opening area is particularly small. Examining the video footage it appears

that the top lip of this player overhangs the bottom by a significant amount.
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Figure 5.20: Starting transient for the note F3 on the tenor trombone in first position.
The lip opening area, mouthpiece pressure and radiated sound are shown. Player TJ

However, there are no unusual features in the form of the mouthpiece pressure

signal. In sixth position the behaviour is very similar, except for the expected

delay in acoustical feedback. There is, however, a marked change in the

form of the steady state radiated sounds between first and sixth positions.

It appears that there may be little difference between starting transients for

the two recordings but that the perceived final sound may well be different.

Examining the instantaneous lip opening area for these notes (figures 5.22 and

5.23) it can be seen that there are less variations from the target frequency than

in the case of the three horn musicians. The player begins the lip oscillation

at a frequency very close to the target, and there is then little variation in the

value of ν. It is interesting to note that for the majority of the recording the
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Figure 5.21: Starting transient for the note F3 on the tenor trombone in sixth position.
The lip opening area, mouthpiece pressure and radiated sound are shown. Player TJ

player’s lip oscillation is slightly flat of the target. This is again in contrast to

the behaviour of the lips of the horn musicians.

Turning now to the note B♭3 in first and fifth positions we see behaviour that

is very consistent with the recordings of the note F3. However, we see here that

the lip opening area is even smaller (amplitude decreases with an increase in

pitch). Unfortunately extracting the open area data from these small amplitude

recordings is difficult, and there are a few peaks in the opening area caused by

the ‘noise’ inherent with measuring a small signal. These peaks have caused

some large amplitude ‘spikes’ in the behaviour of ν for these notes. Ignoring

these, we see that once again the majority of lip oscillation cycles occur at a

frequency below the target frequency.
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Figure 5.22: Instantaneous lip opening area frequency (ν) during the starting
transient. The target frequency is the frequency of the target note, with A = 440Hz.
Note F3, tenor trombone in first position. Player TJ
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Figure 5.23: Instantaneous lip opening area frequency (ν) during the starting
transient. The target frequency is the frequency of the target note, with A = 440Hz.
Note F3, tenor trombone in sixth position. Player TJ
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Figure 5.24: Starting transient for the note B♭3 on the tenor trombone in first position.
The lip opening area, mouthpiece pressure and radiated sound are shown. Player TJ
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Figure 5.25: Starting transient for the note B♭3 on the tenor trombone in fifth position.
The lip opening area, mouthpiece pressure and radiated sound are shown. Player TJ
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Figure 5.26: Instantaneous lip opening area frequency (ν) during the starting
transient. The target frequency is the frequency of the target note, with A = 440Hz.
Note B♭3, tenor trombone in first position. Player TJ

Figure 5.27: Instantaneous lip opening area frequency (ν) during the starting
transient. The target frequency is the frequency of the target note, with A = 440Hz.
Note B♭3, tenor trombone in fifth position. Player TJ
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5.6.4 Notes F3 and B♭2, bass trombone
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Figure 5.28: Starting transient for the note F3 on the bass trombone in first position.
The lip opening area, mouthpiece pressure and radiated sound are shown. Player SN

Recordings of the starting transient on the bass trombone were made with

two different instrument lengths. The first position chosen was first position,

with the slide fully retracted. The second was in the fifth position with the

trigger depressed. In this configuration, the bass trombone is approximately

the same length as a B♭-basso horn.

Figures 5.28 and 5.29 show the transient behaviour of the note F3 played

on the bass trombone in first position as played by player SN. The top lip of

this player appears to overhang the bottom lip significantly and unfortunately

it was not possible to capture the open area data for this player with the
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Figure 5.29: Instantaneous lip opening area frequency during the starting transient.
The target frequency is the frequency of the target note, with A = 440Hz. Note F3,
bass trombone in first position. Player SN

trombone in the ‘basso’ position. Examination of the instantaneous open area

frequency for this player suggests that the first few cycles oscillate around the

target before becoming more constant in frequency as the acoustic feedback

reinforces the oscillation.

Typical recordings of the note B♭2 in both first and ‘basso’ positions on the

bass trombone by player MF can be seen in figures 5.30 to 5.33. The transient

behaviour of the lips of this player is very similar to those that we have seen

already. For the shorter instrument the time taken for acoustical feedback to

reach the mouthpiece is shorter than in the case of the longer instrument, as

expected. Looking at the instantaneous lip opening area frequencies in figures

5.32 and 5.33 we see that in both notes the musician has begun lip oscillation

slightly below the target frequency. This is in contrast to the three horn players

who consistently began their notes above the frequency of the intended pitch.
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Figure 5.30: Starting transient for the note B♭2 on the bass trombone in first position.
The lip opening area, mouthpiece pressure and radiated sound are shown. Player MF

The measurements reported here show that, for the limited number of cases

studied, the transients on brass instruments are considerably influenced by

the delay between the start of lip vibration and the return of the first reflection

to the mouthpiece. Benade [1969] has suggested that a significant difference

between the group velocity and phase velocity for a particular note played

on a specific instrument could explain difficulties in starting the note. More

extensive studies are required to establish how consistent the behaviour of the

starting transient is across repetitions of the same note by a particular player,

and to what extent the ‘playability’ of an instrument can be identified with

specific features of its reflection coefficient.
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Figure 5.31: Starting transient for the note B♭2 on the bass trombone in fifth position
plus trigger (effectively a B♭-basso trombone). The lip opening area, mouthpiece
pressure and radiated sound are shown. Player MF
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Figure 5.32: Instantaneous lip opening area frequency during the starting transient.
The target frequency is the frequency of the target note, with A = 440Hz. Note B♭2,
bass trombone in first position. Player MF
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Figure 5.33: Instantaneous lip opening area frequency during the starting transient.
The target frequency is the frequency of the target note, with A = 440Hz. Note B♭2,
bass trombone in fifth position plus trigger. Player MF
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5.7. Slurs

5.7 Slurs

One extremely common feature of brass wind instrument playing is the ‘slur’,

where a player changes smoothly from one pitch to another. The musician

achieves this by a combination of a change in embouchure, typically altering

the lip tension, air-flow, and mouthpiece pressure. If the note to which they

are changing is not one of the resonant modes of the instrument then they will

also need to change the length of the instrument with the use of either slide or

valves. If the destination note is one of the resonant modes of the instrument

then they can achieve the slur entirely through a change in embouchure and

mouthpiece pressure. Musicians typically refer to this technique as a lip-

slur. Players believe that they are able to achieve a different sounding slur

by altering the manner in which they alter their embouchure whilst changing

notes [Farkas, 1956] and spend many hours practicing to achieve the desired

effect [Norman, 2009].

5.7.1 Slur measurements: method

There have been several studies of variation in impedance of valved instru-

ments during slurring [Widholm, 1997; Widholm, 2005]. In this work the

experimental procedure and analysis method detailed in section 5.3 were used

to measure the lip opening area, mouthpiece pressure, and radiated sound for

two different horn players during two different lip-slurs. The first was a slur

from D3 to D4 (an octave) between the fourth and eighth modes of the horn in

open D. The second was between the third and fourth modes of the horn in

F, corresponding to an interval of a perfect fourth between the notes C3 and

F3. Both slurs were performed by both musicians on the same instrument, an
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early 20th century narrow bore horn by Boosey and Hawkes.

These two players were chosen because they practice different techniques

for lip-slurring. The first player, LN, follows the teachings of Farkas [1956]

and describes their style of lip-slur as follows:

‘my main aim is to keep the note going during the slur by sup-

porting the note with more air as the note moves from one to the

next (upwards). In doing so, it feels to me as if I am very briefly

‘catching’ some of the intermediate resonances on the way up. In

a way, I use the feeling of the notes during the slur, to predict

when I’m about to hit the upper note, so that I don’t split it, but

it all happens very quickly! I prefer to do that then reduce the air

pressure in between which I know a lot of players do, as then it

feels a bit more like a blind jump’

The second player, JC, uses a different style of lip-slur which they describe as:

‘I...aim to get from one note to another with the least hiatus in the

sound along the way. Years of practice have lead me to believe that

this could be achieved by blowing continuously through the slur,

which consisted of a very rapid repositioning/tensioning of the

embouchure coupled with a strong conviction of ‘where the next

note is.’ ’

5.7.2 Lip-slurs: results

Figure 5.34 shows the lip opening area, mouthpiece pressure, and radiated

sound for the slur D3 to D4 performed by player LN. It can be seen clearly

that the transition begins around 40ms, where the lip opening area begins
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Figure 5.34: Transient for the slur D3 to D4 on piston horn in D (fourth mode
to eighth mode). The lip opening area, mouthpiece pressure and radiated sound are
shown. Player LN

to steadily decrease. The area continues to decrease throughout the slur

and when the steady state of the second note is achieved (around 150ms)

the amplitude of the lip opening area is considerably smaller than it was

for the first note. The lips appear to continue to oscillate through the entire

process. Examining the mouthpiece pressure during the slur, we see that the

form of the pressure signal varies greatly. The radiated sound shows similar

behaviour. Figure 5.35 shows the calculated values of ν during this slur. The lip

oscillation remains at a steady frequency until approximately 60ms (20ms after

the lip opening area begins to decrease). Then, it appears to ‘sweep’ through

a succession of higher frequencies, overshooting the destination frequency
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Figure 5.35: Instantaneous lip opening area frequency ν during the slur D3 to D4

(fourth mode to eighth mode) on horn in D. The target frequency is the frequency of
the played notes, with A = 440Hz. Player LN

before settling back down to the frequency of the second note when the steady

state is achieved. The intermediate values of ν do not appear to correspond to

any resonances of the instrument. The whole lip-slur appears to take around

100ms (steady state to steady state), which is around twice the time for a typical

starting transient.

Turning now to figures 5.36 and 5.37 we can examine a typical slur from

D3 to D4 by player JC. As in the case of player LN, we again see the lip

opening area decrease in amplitude as the player approaches the change of

pitch. Around 50ms the lip opening area stays approximately constant for

between 5 and 10ms, suggesting that the lips are no longer oscillating at

this point. The oscillation then begins again with one very large amplitude

oscillation. Around 120ms we have reached the steady state regime of the

second note. Perusal of the mouthpiece pressure over this period shows that
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Figure 5.36: Transient for the slur D3 to D4 (fourth mode to eighth mode) on horn in
D. The lip opening area, mouthpiece pressure and radiated sound are shown. Player
JC

the form of the pressure signal is much simpler than in the previous case with

player LN. Examining the radiated sound between 40 and 70ms it appears

that the radiated sound has essentially disappeared. Indeed, on listening to

the radiated sound slowed down by factor two it is possible to hear a distinct

‘break’ in the sound. It appears that in this case the player has not achieved

a smooth slur but has in fact stopped playing for a very brief instant before

very quickly beginning the second note. Again, the time period for the whole

lip-slur is around twice that of a typical starting transient. It is interesting to

note, however, that even though this player appears to have treated this slur as

two separate notes played in quick succession the instantaneous lip opening
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Figure 5.37: Instantaneous lip opening area frequency ν during the slur D3 to D4

(fourth mode to eighth mode) on horn in D. The target frequency is the frequency of
the played notes, with A = 440Hz. Player JC

area, ν, behaves differently here in comparison to that measured during a

‘normal’ starting transient by the same player (for example, figure 5.12). It

should also be noted that the player has stated that the experimental setup—

with unorthodox mouthpiece and unusual position of the instrument—made

it harder to perform a slur to his usual level. It may well be that the current

setup is slightly too awkward for the study of the finer details of instrumental

technique.

Figures 5.38 to 5.41 show typical slurs from C3 to F3—third mode to fourth

mode, on the horn in F—as played by players LN and JC. It can be seen clearly

that the manner in which both players approached the slur is similar to the

octave slurs presented in figures 5.34 to 5.37. For player LN, there are no

obvious discontinuities in the motion of the lips, the mouthpiece pressure, or

the radiated sound. In this case, the player seems to have moved smoothly
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Figure 5.38: Transient for the slur C3 to F3 (third mode to fourth mode) on the horn
in F. The lip opening area, mouthpiece pressure and radiated sound are shown. Player
LN

from one note to the next without any hiatus. The behaviour of ν for this

recording shows that, once again, the player has reached the target frequency

via a series of intermediate steps. This is consistent with both the stated

intentions of the musician and with the slur behaviour seen previously. For

player JC, there are no clear discontinuities in the data presented in figure 5.40.

This is in contrast to the manner in which this musician performed the slur D3

to D4 where there was a definite ‘break’ in the sound. In the case of the slur

C3 to F3 the musician is changing between consecutive modes, whereas in the

octave slur they were moving between the fourth and eighth modes. It may

be that for a small change in mode number it is simple for this musician to

162



5.7. Slurs

Figure 5.39: Instantaneous lip opening area frequency ν during the slur C3 to F3

(third mode to fourth mode) on horn in F. The target frequency is the frequency of the
played notes, with A = 440Hz. Player LN

‘predict’ where the next mode lies and modify their embouchure accordingly

whilst for a larger change it is simpler (or more accurate) to quickly stop the

oscillation and then form a new note.
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Figure 5.40: Transient for the slur C3 to F3 (third mode to fourth mode) on the horn
in F. The lip opening area, mouthpiece pressure and radiated sound are shown. Player
JC
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Figure 5.41: Instantaneous lip opening area frequency ν during the slur C3 to F3

(third mode to fourth mode) on horn in F. The target frequency is the frequency of the
played notes, with A = 440Hz. Player JC
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5.8 Transient behaviour: conclusions

Lip opening areas, mouthpiece pressures and radiated sounds were measured

for a variety of different musicians on a number of different instruments. All

the data reinforce the theory of an initial pulse travelling the length of the

instrument before being reflected at the bell. Once the pulse returns to the

mouthpiece the oscillation is reinforced. The time to reach the steady state

regime was, in all cases, no longer than 50ms. However, the behaviour of the

lips and mouthpiece pressure is not consistent from player to player. It would

be immensely helpful to take a large number of repeat measurements across a

large number of musicians.

Measurements of lip-slurs on the horn showed that typical time for the

transition from one note to the next was of the order of twice that for a

typical starting transient. Different players appear to approach the same

slur in varying ways depending on their own personal technique. Repeat

measurements with more musicians would be of great interest.

There are several possibilities to expand the range of measurements during

the starting transient. Acoustic Pulse Reflectometry makes use of multiple

microphones to separate the forward and backward-going waves as they

traverse an instrument. A similar technique could be used here to study the

propagation of the starting transient at various stages in the instrument. It

would also be particularly interesting to study precisely what happens when

a musician pushes a valve or moves the slide in conjunction with altering

the embouchure. Some kind of sensor could be used to track the motion of

the valve during the transient. These recommendations for further work are

discussed in greater detail in section 7.3.
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Chapter 6

Starting transient of the artificial

mouth

‘The factory of the future will have only two employees, a man and a dog. The man

will be there to feed the dog. The dog will be there to keep the man from touching the

equipment’

—WARREN G. BENNIS

6.1 Pressure in the mouth of the player during the

starting transient

Many researchers have made use of artificial mouths to study the behaviour of

brass wind instruments [Gilbert et al., 1998; Cullen, 2000; Bromage, 2007]. Us-

ing an artificial mouth makes it possible to make measurements that may not

be possible with a real musician, and also allows the experimentalist to fully

control what the ‘musician’ does. Human players may make subconscious

alterations to their embouchures but an artificial mouth cannot.
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6.1. Pressure in the mouth of the player during the starting transient

Figure 6.1: The Sensortechnics HCXM050D6H amplified pressure sensor used to
measure the pressure in the mouth during the starting transient

Previous studies using an artificial mouth have focused on steady-state

behaviour. In order to create realistic transients using the artificial mouth it

is first necessary to understand what happens in the mouth of a real player

as a note begins. To this end, an experiment was designed to measure the

pressure in the mouth of human players during the starting transient, and

to see whether the existing artificial mouth could be used to recreate this

behaviour.

During an investigation of the starting transient of mechanical action organs,

Woolley [2006] used a Sensortechnics amplified pressure sensor [Sensortech-

nics, 2009] to study the pressure build up inside the pallet of an organ during

the starting transient. These sensors have a very fast response time and are

also rated to work in humid conditions, making them ideal for measuring the

pressure inside the mouth of a human during playing. The Sensortechnics
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6.1. Pressure in the mouth of the player during the starting transient

Figure 6.2: The pressure sensor inserted into the mouth of the player. After a few
minutes practice the players were able to play normally

HCXM050D6H amplified pressure sensor is rated up to 50 mBar. Typical

mouthpiece pressures during normal playing are of the order 30 mBar and

so this sensor was ideal for purpose. The sensor can be seen in figure 6.1. It

was important that the pressure sensor did not interfere with or distract the

musician from playing as normally as possible. After discussions with several

brass players, it was decided that it would be feasible to insert a small piece of

plastic tubing into the side of the mouth whilst the musician was playing. The

other end of the tubing was connected to the Sensortechnics HCXM050D6H,

and in this way the pressure in the mouth during the starting transient could

be measured. Figure 6.2 shows the piece of tubing inserted into the mouth of
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6.1. Pressure in the mouth of the player during the starting transient

a player. The musicians reported that after a few minutes practice they were

able to play almost entirely normally with the tubing inserted.

The output from the HCXM050D6H was recorded using PULSE along with

the pressure inside the mouthpiece and the sound radiated from the bell of

the instrument as before. The synchronisation process in section 5.4.1 was

modified to include the signal from the Sensortechnics pressure sensor. The

modified synchronisation process can be seen in figure 6.3.

PC 

Camera

PC 

PULSE Pulse generator

Camera

PCB microphone

Pressure sensor

4192 microphone

signals

Figure 6.3: The synchronisation process for transient measurements (see section
5.4.1) was modified slightly to include the Sensortechnics HCXM050D6H amplified
pressure sensor
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6.2 Starting transients: pressure in the mouth of

human players

6.2.1 Tenor trombone
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Figure 6.4: Starting transient for the note B♭2 on the tenor trombone in first position.
The mouth pressure, lip opening area, mouthpiece pressure, and radiated sound are
shown. Player DMC

Since the artificial mouth does not have any kind of tongue mechanism, the

human players were asked not to articulate the notes they played for these

measurements using their tongues. Figures 6.4 and 6.5 show measurements

of the starting transient of the notes B♭2 and F3 on the tenor trombone in first

position played by player DMC, whilst figure 6.6 shows a recording of the note

F3 played on the same instrument by the same player, but in the sixth position.
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Figure 6.5: Starting transient for the note F3 on the tenor trombone in first position.
The mouth pressure, lip opening area, mouthpiece pressure, and radiated sound are
shown. Player DMC

Encouragingly, the form of the lip opening area, mouthpiece pressure,

and radiated sound are consistent with the results that have been presented

already. This suggests that the insertion of the pressure sensor into the mouth

of the player has not negatively affected the musician whilst playing.

It should be noted that the Sensortechnics pressure sensor measures not

just the acoustic pressure but the absolute pressure inside the mouth of the

player. For all three notes on the trombone played by player DMC, the absolute

pressure in the mouthpiece rises steadily until approximately 2.5kPa at which

point the acoustic part of the oscillation begins. For the note B♭2 the pressure

rise is at a rate of 10Pa/s. For the notes F3 the pressure rise is 18Pa/s for first
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Figure 6.6: Starting transient for the note F3 on the tenor trombone in sixth position.
The mouth pressure, lip opening area, mouthpiece pressure, and radiated sound are
shown. Player DMC

position and 10Pa/s for the sixth position.

In all three cases the acoustic part has approximately the same amplitude,

of order 1kPa. During the note the DC component of the mouth pressure

remains approximately constant. It can also be seen that, as expected, the

pressure in the mouth of the player is π radians out of phase with the pressure

in the mouthpiece of the instrument. That is, each maximum in mouth

pressure corresponds to a minimum in the mouthpiece signal. Interestingly,

the maximum amplitude of the acoustic part of the signal is found not during

the steady state oscillation. The amplitude increases as the acoustic feedback

from the instrument is received before lowering and ‘levelling off’ during the
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steady state part of the note.

6.2.2 Horn
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Figure 6.7: Starting transient for the note F3 on the horn. The mouth pressure, lip
opening area, mouthpiece pressure, and radiated sound are shown. Player JC

Figures 6.7 and 6.8 show recordings of the note F3 as played on horn by

player JC. The first set of data shows a recording made with no valves de-

pressed whilst the second was made with valves 2 and 3 operated, lengthening

the instrument.

Again, we see that the inclusion of the pressure sensor into the mouth

has not greatly altered the form of the open area, mouthpiece pressure, or

radiated sound signals. The pressure in the mouth of player JC seems to be
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Figure 6.8: Starting transient for the note F3 on the horn with valves 2 and 3 pressed.
The mouth pressure, lip opening area, mouthpiece pressure, and radiated sound are
shown. Player JC

consistent with that of player DMC during the starting transient. At first,

the mouthpiece pressure increases steadily until approximately 2kPa when the

acoustic oscillation begins. In both measurements on the horn the pressure rise

is approximately the same: 10Pa/s. This is an identical rise time to that of the

notes recorded on the trombone.

In further agreement with the trombone recordings the mouth and mouth-

piece pressures are once more π radians out of phase, and the amplitude of

the acoustic part of the mouth pressure increases during the starting transient

before decreasing and levelling during the steady state.
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6.2.3 The starting transient of the artificial mouth

Figure 6.9: The Sensortechnics HCXM050D6H was inserted just upstream of the
artificial lips

The artificial mouth used for this part of the thesis was that designed by

Newton [2008], which is described in detail in section 3.5 of this thesis. In

order to measure the pressure in the ‘mouth’ of the artificial lips a small hole

was drilled just upstream of the lips. A small probe was attached to the piece

of tubing connected to the Sensortechnics HCXM050D6H sensor and inserted

into this hole, as can be seen in figure 6.9.

The artificial mouth was mounted and a trombone was mounted into the

system once a playable embouchure was found. The playable embouchure

that was found was somewhat lower in frequency than that used with the

human musicians. However, the instrument still sounded satisfactorily. Once
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Figure 6.10: Starting transient for the note G2 on the tenor trombone. The mouth
pressure, lip opening area, mouthpiece pressure, and radiated sound are shown. Player
Artificial Lips, dataset 4

the entire mouth-instrument system was in place the camera was put into

place, and all data acquisition software primed for recording.

Unlike human players, the artificial mouth does not have a tongue with

which to articulate a note. Instead, a rapid rise in mouth pressure was obtained

by another method. The mouth box which the lip system was mounted on has

a number of holes in it which in the past have been used to allow the insertion

of microphones and pressure sensors. When not being used, these holes are

plugged by the insertion of rubber stoppers. It was found that when one of the

larger stoppers was removed, air could escape via the mouth cavity instead

of being forced through the lips. In this case, there was no longer sufficient
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Figure 6.11: Starting transient for the note G2 on the tenor trombone. The mouth
pressure, lip opening area, mouthpiece pressure, and radiated sound are shown. Player
Artificial Lips, dataset 5

air pressure for the lips to oscillate. This effect was used to create a starting

transient on the artificial mouth. First, the air pump was switched on and one

of the rubber stoppers removed, preventing the build-up of any air pressure

in the mouth cavity. The rubber plug was then rapidly reinserted (by hand),

causing a sudden increase in pressure upstream of the lips. This sudden rise

in mouth pressure was sufficient to vibrate the lips and hence begin the note.

It was found that this method was both simple and repeatable and so it was

decided that this would be the method used to replace the ‘tongue’ of human

players.

Figures 6.10, 6.11 and 6.12 show typical recordings of the starting transient
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Figure 6.12: Starting transient for the note G2 on the tenor trombone. The mouth
pressure, lip opening area, mouthpiece pressure, and radiated sound are shown. Player
Artificial Lips, dataset 6

of the artificial lips playing the tenor trombone. It is immediately clear that

there are some differences in comparison to the behaviour of the lips of human

players. Firstly, the pressure rise in the mouthpiece before the note begins is

not constant. There is, initially, a rapid rise in pressure and then a period of

slower pressure rise before the note begins. However, replicating precisely

the precise form of the pressure rise within the mouth of the player is not

entirely necessary. From an acoustic point of view, it matters little the route

by which the static overpressure in the mouth reaches the point at which

acoustic oscillation of the lips begins. Of course, a complete model must also

consider the effect that airflow and turbulence may have on the system using
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6.2. Starting transients: pressure in the mouth of human players
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Figure 6.13: Instantaneous lip opening frequency for the artificial lips calculated
using the peak detection software. It is clear from the opening area data for the notes
on the artificial lips that there are a number of ‘double’ peaks. This created a number
of ‘false positives’ when using peak detection to calculate ν. This created several large
frequency spikes as can be seen here. The peak finding program was altered to use zero
crossings, as can be seen in figure 6.14

the principles of fluid dynamics. However, it seems unlikely that the precise

nature of the airflow within the mouth can have more than a secondary effect

on the behaviour of the lips and a full treatment of the fluid dynamics involved

is beyond the scope of this thesis.

In all three cases, the pressure rises from approximately 1 to 1.5kPa where

oscillation appears to begin. This is 1kPa lower than the threshold pressure

found using the two human players. However, the artificial lips play at a

quieter level than their human counterparts and if one were to measure the

transient behaviour of a human player at a pianissimo level it would seem

likely that one would observe pressures of these amplitudes. Once the note has

begun the acoustic component of the mouth pressure has a smaller amplitude
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6.2. Starting transients: pressure in the mouth of human players
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Figure 6.14: The software used to calculate ν was altered to find positive zero
crossings. This technique was used to avoid the problems caused by the ‘double’ peaks
in the open area data. The zero crossings method relies heavily on a good signal to
noise ratio and so the accuracy improves as the amplitude of the motion increases

than in the case of the human players. This is due to the volume of the mouth

being larger in the case of the artificial lips.

However, one of the main purposes of using the artificial lips for this kind

of work is in order to ensure consistency and repeatability. In this respect,

the artificial lips are clearly successful—all three mouth pressure signals are

remarkably similar.

With regards to the lip opening areas, it can be seen that there are several

small ‘wobbles’ before there is any acoustic oscillation in the mouthpiece

pressure. This phenomenon occurs because the artificial lips are filled with

water and are not as damped as the lips of a human player. Correspondingly,
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6.2. Starting transients: pressure in the mouth of human players
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Figure 6.15: Instantaneous lip opening area frequency ν during the starting transient.
Target frequency is the frequency of the target note, with A = 440Hz. Note G2, tenor
trombone. Player Artificial Lips, dataset 4

when air begins to flow past them they begin to move, even if there is not

yet any sustained self-oscillation. This feature means that it is not practical

to use the lip opening area data as a marker of when the note has begun. In

addition, the low damping of the lips causes some slightly unusual behaviour

of the lip opening area even when the note has reached the steady state. It can

be clearly seen that there are some ‘double’ peaks in the lip opening area for

all three recordings. These are caused by the motion of the water in the lips,

which causes the lips themselves to move. To produce a truly realistic artificial

mouth system it will be necessary to fill the latex lips with something other

than water, in order to produce something with mechanical properties closer

to that of a real lip.

The unwanted lip ‘wobbles’ before the note begins proper, coupled with

the double peaks that can be seen once the oscillation has begun, meant that
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6.2. Starting transients: pressure in the mouth of human players

0 50 100 150 200
50

100

150

200

Time (ms)

F
re

qu
en

cy
 (

H
z)

Instantaneous Lip Opening Area Frequency, note G2, Trombone, Artificial Lips

Target Frequency
Lip Area Frequency

Figure 6.16: Instantaneous lip opening area frequency ν during the starting transient.
The target frequency is the frequency of the target note, with A = 440Hz. Note G2,
tenor trombone. Player Artificial Lips, dataset 5

it was difficult to obtain much meaningful information from the form of the

instantaneous lip opening area frequency when calculated using the peak

finding routine, as shown in figure 6.13. The double peaks caused a number

of false positives to be found by the software, creating a number of large

frequency spikes in ν. To eliminate this problem, the peak finding software

(see section 5.5.1) was altered to use a positive zero crossings method as can be

seen in figure 6.14. Using the time period between these zero crossings as the

‘period’ of one oscillation made it possible to recalculate ν. The zero crossings

method relies on a good signal to noise ratio and so at the very beginning of

the motion, where the lip opening area has a small amplitude, there were still

a small number of false positives. However, on the whole the zero crossings

method was much more accurate for finding ν for the artificial lips than the

peak finding method.

183



6.2. Starting transients: pressure in the mouth of human players
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Figure 6.17: Instantaneous lip opening area frequency ν during the starting transient.
The target frequency is the frequency of the target note, with A = 440Hz. Note G2,
tenor trombone. Player Artificial Lips, dataset 6

Figures 6.15,6.16, and 6.17 show the recalculated values of ν for the artificial

lips during the starting transient. It is clear that on the whole, the artificial lips

oscillate at a frequency at, or around, the target frequency, as expected. They

appear to maintain a much more stable frequency of oscillation than can be

found with human players.

The mouthpiece pressure signals for the notes recorded on the artificial

lips are clearly much noisier than the recordings made with human players.

There are several reasons for this. Firstly, the artificial lips can not play

as loudly as human players, and so when using the low sensitivity PCB

microphone to measure the mouthpiece pressure signal the signal-to-noise

ratio is correspondingly lower. Secondly, the artificial lips are not trained

musicians, and it is not always possible to set up a ‘perfect’ embouchure.

It seems that with this particular choice of lip parameters the note that was
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6.3. Conclusions

formed was not ideal. This would appear to be reinforced by the fact that the

radiated sound signals are also noisier than their human-played counterparts.

However, that is not to say that the measurements of the starting transient of

the artificial lips are not successful. On the contrary, they reinforce the picture

which has been obtained with measurements on human musicians. There is

an initial oscillation of the lips which creates an acoustic pulse. This pulse

traverses the instrument until it is reflected at the bell. Once it returns to the

mouthpiece the oscillation receive acoustical feedback and the oscillation is

reinforced.

It is also clear that the artificial lips are able to produce starting transients

which are both realistic and repeatable and that it will be possible to use them

to make a detailed analysis of the starting transient in a way which is not

possible with human players. Using the artificial lips, it will be possible to see

what effect a change in, for example, mouthpiece pressure has on the starting

transient, keeping all other lip parameters constant.

6.3 Conclusions

Measurements were made of the pressure in the mouth of two players during

the starting transient and the data compared to that recorded using an artificial

mouth. The results obtained were repeatable and consistent with those found

for the human players. Several small modifications could be made to the

artificial mouth using knowledge obtained from these measurements. These

alterations are described in chapter 7.
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Chapter 7

Conclusions and future work

‘You see, most...most blokes, you know, will be playing at ten. You’re on ten here...all

the way up...all the way up....You’re on ten on your guitar...where can you go from

there? Where?’

—NIGEL TUFNEL

7.1 The motion of the lips during performance

The use of a high speed digital camera and specially designed transparent

mouthpieces in order to quantitatively analyse the motion of the lips of brass

wind instrument players was discussed. It was found that the lips behaved

in an asymmetrical manner during the opening and closing phase of an

individual cycle. It was found that for some parts of a cycle, the motion of

the lips could be described in the form

A(t) ∝ H(t)n (7.1)

The lips of the human musicians studied tended to open and close along lines
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7.1. The motion of the lips during performance

of different constant n. There was evidence of hysteresis effects as the lips

changed between the different regions of n. With the exception of one possibly

anomalous result, n > 1. In all cases, the lips closed in a different manner

to the way in which they opened. Analysis of the relationship between the

opening height of the lips and the opening area provides further support for

the findings of Richards [2003] and Bromage [2007]. This information can now

be used to create improved computational models of the lips during brass

instrument performance. If the lips are modelled as masses on springs then

this kind of behaviour could be recreated by altering the value of the exponent

n during different parts of the cycle. Improved physical models could be a

useful tool for instrument makers and designers.

In contrast to the lips of human musicians, the lips of the artificial mouth

were shown to behave in an extremely symmetrical manner. The relationship

between opening area and height was examined and it was found that, as in

the case of human players, the relationship could be described in the form of

equation 7.1. The artificial lips were found to remain on a region with n ≈ 1 for

the vast majority of the cycle. This corresponds to a model of the lips in which

the opening area can be described in terms of a rectangle of varying width.

Examining the opening width data for the artificial lips confirms this analysis,

as the artificial lips open to their maximum width almost instantaneously at

the begining of a cycle. At the point of maximum lip opening, the opening and

closing phases of the lip motion are indistinguishable.
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7.2. Extremely loud playing

7.2 Extremely loud playing

7.2.1 Variations in mouthpiece and radiated sound pressures

with amplitude

The pressure in the mouthpiece of a tenor trombone and a horn was measured

during both brassy and non-brassy playing using a low sensitivity PCB

pressure transducer. The results were consistent between players, instruments,

and pitch. In general terms, the form of the pressure signal did not show any

significant changes—other than that of amplitude—between non-brassy and

brassy playing. The main difference between the two cases is the variation in

the maximum rate of change of pressure in the mouthpiece ( ∂Pm
∂t )max . This is

consistent with the theory of nonlinear propagation as proposed by Hirschberg

et al. [1996].

The corresponding radiated sound pressures were also recorded. Examining

the form of these pressure signals showed that an increase in mouthpiece

acoustic pressure amplitude of factor 2 or 3 led to an increase in radiated

acoustic sound pressure ampitude of factor 10 or more. In addition to this,

there is a clear variation in the form of the radiated sound for brassy and

non-brassy playing. In the brassy case, there is clear evidence of shockwave

formation within the body of the instrument. The non-brassy case does not

behave in this manner.

Spectral centroids were calculated for both mouthpiece and radiated pres-

sures during both brassy and non-brassy playing. It was shown that the

centroid of the radiated sound increased by a much greater factor than the

centroid of the mouthpiece sound when changing from non-brassy to brassy

playing dynamic.
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7.2. Extremely loud playing

Three recordings of non-brassy playing were used to calculate the linear

high-pass filtering effect of the bell. Applying this filter to a brassy mouthpiece

recording made it possible to calculate the expected spectral centroid at the

output if the instrument were treated in an entirely linear manner. Comparing

this calculated centroid with the measured, nonlinear, centroid showed that

the majority of increase in the energy levels of the higher harmonics should be

attributed to the nonlinear properties of the instrument.

It now seems clear that the distinctive brassy or ‘cuivré’ sound of a brass

wind instrument is primarily due to the nonlinear properties of the instrument

itself. It is of interest to brass musicians, makers, and historians to be able to

classify instruments into distinct groups. If it is the shape of the instrument

which dictates the way the instrument performs in the brassy regime then it

would seem sensible to use brassiness as a form of musical taxonomy, and,

indeed, some researchers have already begun this task [Gilbert et al., 2007].

In addition, if a brass instrument maker wishes to make an instrument which

sounds either more or less brassy than an existing design then he will be able

to add either cyclindrical or conical sections as necessary. Cylindrical bore

profiles will create a brassier sound whilst conical bores will counteract the

effect. With regards to performance, if musicians are able to alter the maximum

rate of change of pressure in the mouthpiece then they will be able to either

lessen or enhance the nonlinear wave steepening [Norman et al., 2009]. In other

words, they will be able to control the level of brassiness without changing

dynamic. If musicians are able to master this technique then they will be able

to add a considerable variety of timbre to their musical palette.
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7.2. Extremely loud playing

7.2.2 Variations of lip opening area with amplitude

Lip opening areas were recorded using a high speed camera for a number

of notes, instruments, and players. The opening area increased in size with

amplitude and decreased with pitch. Other than these expected variations

there are no dramatic differences to be seen between brassy and non-brassy

pairs.

7.2.3 Variations of lip motion in the direction of the air flow

A specially designed trombone mouthpiece with side window was made in

order to study the motion of the lips in the longitudinal direction—that is, in

the direction of the airflow (the y − z plane). Three different trombone players

were asked to play pairs of notes of the same pitch but different dynamic level;

one at a mezzo forte level and a second as loudly as possible.

Inspection of the videos and pressure signals obtained using a high speed

camera and microphones—shown in section 4.8—makes it clear that during

brass instrument playing the lips of the player undergo a complicated motion

in all three dimensions. The top lip dominates the motion and appears to

traverse an approximately elliptical path, protruding into the mouthpiece

in the direction of the airflow whilst arcing upwards towards the roof of

the mouthpiece. Then, it travels back towards the face of the player whilst

dropping back down to its initial vertical position. This is in agreement with

the results of Copley and Strong [1996] and also of Newton [2008]. Analysis

shows that the top lip can travel as far as 1cm in both horizontal and vertical

directions.

In agreement with the results shown in both chapter 3 and Bromage [2007]
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7.2. Extremely loud playing

the amplitude of the lip motion increased with amplitude but also decreased

with pitch. For some low frequency, non-brassy, playing the distance which

the lip moved was greater than the distance during higher frequency, brassy,

playing. This suggests that it is not the amplitude of the motion of the top lip

in the longitudinal direction that is primarily responsible for the brassy sound.

Inspection of the mouthpiece pressure signals in comparison with the

corresponding high speed camera footage suggests that even though there is a

large mass of the top lip moving throughout the cycle the motion of this mass

does not appear to contribute significantly to the pressure in the mouthpiece.

If this is the case, to produce a realistic model of the lip-reed it may not be

necessary to fully reproduce the full three-dimensional motion of the lips.

7.2.4 Obtaining the brassy sound using an artificial mouth

An unsuccessful attempt was made to use the artificial mouth—detailed in sec-

tion 3.5—to produce a brassy sound. The current design of the artificial mouth

is not yet capable of producing self-sustained oscillations at the ffff level.

Some design modifications—or possibly a complete redesign—are required in

order to successfully obtain the desired effect. During a crescendo on a brass

instrument the player continually makes adjustments to the embouchure. In

order to produce a realistic crescendo using the artificial mouth this kind of

fine control of the lips during playing must be achieved. This should be

possible with some kind of material whose tension can be controlled using an

electrical signal. However, the first aim should be to produce not a crescendo,

but instead to concentrate on achieving the ‘brassy’ sound using the artificial

mouth. An air source capable of producing pressures in the kPa range is

required. An investigation of the precise embouchure used by human players
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7.3. Transient behaviour of the lip reed

at the loudest level (geometry, tension) should yield enough information to

allow the artificial lips to play at a brassy dynamic.

7.3 Transient behaviour of the lip reed

7.3.1 Starting transients

The lip opening area, pressure in the mouthpiece and sound radiated from the

bell of the instrument were synchronised and measured during the starting

transient for a variety of instruments and musicians. Overall, the behaviour

was consistent between musicians but there were differences in the precise

nature of the starting transient for both different musicians and different

instruments. The musician begins the note by causing the lips to oscillate at

a frequency close to that of the desired note. This creates an acoustic pulse

which travels through the instrument and is partially reflected at the bell.

When this reflected wave reaches the mouthpiece the oscillation is reinforced

and the amplitudes of the mouthpiece pressure and lip opening area increases

dramatically. The starting transient is greatly influenced by the time delay

between the beginning of the lip oscillation and the return of the initial pulse to

the mouthpiece of the instrument. The data obtained will allow comparisons

to be made between physical and computational models of the lips and the

behaviour of the lips of human players.

Measuring the lip opening area, mouthpiece pressure signal and radiated

sound makes it possible for musicians, instrument makers, and scientists

to make a qualitative statement about the quality of an instrument. For

instance, it should be possible to diagnose a valve misalignment by carefully

studying the form of the transient and comparing with that of a known ‘good’
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instrument. Comparing two nominally identical instruments in this manner

should make it easier to find specific differences between them. Being able to

quickly and accurately find the difference between a good instrument and a

poor one in this way could be a useful form of quality control for instrument

makers.

7.3.2 Slurs

The technique used to measure and analyse the starting transient was also

applied to a number of lip-slurs performed on the horn. It was found that

the time taken for the system to change from one steady-state to another was

around twice that for the system to reach steady-state during the starting

transient. Different musicians appear to use different techniques for playing

a slur and some evidence of this could be seen in the results. If different

techniques and practice regimes can be shown to have a measurable effect on

the sound of a slur then it may be possible to offer some advice to musicians

with regards to producing a specific effect. However, the research presented

here is still very much preliminary and it may be some time before scientists

are able to help teach musicians.

7.4 Mouthpiece pressures and transient behaviour

of an artificial mouth

A small absolute pressure sensor was used to measure the pressure in the

mouth of several human musicians during the starting transient. It was

found that during the starting transient, the pressure in the mouthpiece
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increased steadily until sustained self-oscillation began. The pressure in the

mouth during self-oscillation was found to be, as expected, π radians out of

phase with the mouthpiece pressure. Using this information, the pressure

in the artificial mouthpiece was adjusted to try and create a realistic starting

transient. In general terms, the lips of the artificial mouth reinforce the data

taken from human musicians; the lip oscillation and mouthpiece pressure are

reinforced by acoustic feedback from the air column within the instrument.

The lips of the artificial mouth are not as heavily damped as those of human

players, and this accounts for some of the features of the starting transient

of the artificial mouth. The results are consistent from measurement to

measurement, suggesting that, with some small modifications, the artificial

mouth will be of great use in further studies of the starting transient.

7.5 Future work

7.5.1 The motion of the lips during the steady-state

The current analysis technique is, on the whole, very successful for quanti-

tative measurement of the motion of the lips. However, the ‘binary’ video

analysis method relies on good contrast and lighting of the lips during

recording. In addition, the teeth of the player can make it difficult to extract

the ‘true’ opening area. An alternative analysis method—perhaps using edge

detection—could be a useful tool for future studies.

The calculated values of the height-area parameter n can now be used in

physical and computational modelling. For human players, there are at least

two different values of n during a typical cycle and perhaps existing models

can be adjusted to use different n at different points during the simulation.
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Since the lips close in a different manner to how they open perhaps some

asymmetry could be introduced, perhaps by altering the value of the spring

constant when the lips have reached their maximum opening.

7.5.2 Extremely loud playing

Some brass players report being able to alter the ‘brassiness’ of a note at

constant pitch and volume [Norman et al., 2009]. One factor which determines

the nonlinear distortion in brass wind instrument playing is the maximum

rate of change of mouthpiece pressure, ( ∂Pm
∂t )max. If the player can somehow

alter the lip motion then it may be possible to change the pressure rise in

the mouthpiece and thus alter the brassy sound. However, since this effect

has not been observed here it seems that this may be a special technique

available to some players as opposed to a more general phenomenon. Further

investigation in this area would be of great interest.

Some attempts have already been made to use the ‘brassiness’ of an

instrument as a form of musical taxonomy [Gilbert et al., 2007]. The results

presented here further confirm the theory that the brassiness of an instrument

is created by the instrument itself, not by a constriction of the lips. With this in

mind, it is logical to try and remove the human element from further brassiness

studies. The input from a human player to the instrument is approximately

sinusoidal. Attaching an instrument to a loudspeaker of suitable power output

it will be possible to measure the nonlinear distortion of a sine wave as

it propagates through the instrument. Removing the human element from

the procedure will simplify the process of classifying instruments by their

nonlinear properties.
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7.5.3 Transients

The work presented here is still preliminary and there are several possible

avenues for further exploration of the starting transient of the brass wind

instruments. Firstly, it is vital to gain an understanding of how consistent

an individual player is on repetitions of the same note. Ideally, one would

obtain hundreds of measurements of a single player playing the same note in

the same manner, and then repeat these measurements across multiple players

at skill levels varying from beginner to professional. Once a large number of

measurements have been obtained then it will become easier to distinguish

which behaviours are player specific. A study of what exactly happens when

a player ‘splits’ a note would be particularly interesting.

One of the reasons for studying the starting transient is because musicians

typically use the ‘attack’ of an instrument as a way of distinguishing good

instruments from bad. Once the desirable transient behaviour of a particular

musician has been obtained using measurements on a ‘good’ instrument it

should then be possible to see what differences there are when they play on

a ‘bad’ one. It would also be interesting to modify instruments to simulate

defects; to see, for example, what effect the misalignment of a valve may have

on the starting transient.

During a slur a player typically does more than just alter the embouchure.

Unless the destination note is also a resonance of the current air column of

the instrument it will be necessary to change the instrument length, either by

activating or deactivating a valve or altering the position of the slide. It would

be interesting to measure the precise time and speed at which this change takes

place. This could be done using a small mechanical sensor, or a sensing device

such as a laser vibrometer. It may also be of interest to study the pressure in
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the instrument at particular points during the slur, perhaps using the multiple

microphone technique used in APR to separate forward and backward going

waves.

7.5.4 Transient behaviour of an artificial mouth

There is clearly great scope for the use of artificial mouths in the study of

the transient behaviour of brass instruments. The current mouth, however,

requires a few minor modifications before it can be used to produce truly

realistic simulations. Firstly, the current air supply is not powerful enough

to produce notes at anything more than a pianissimo level. A more powerful

supply of compressed air would be an obvious first step. Secondly, in normal

instrument playing brass players use their tongue to articulate the note which

they wish to produce. The current artificial mouth does not have any kind

of tongue. Producing a realistic tonguing system would be of great help in

producing more realistic transient behaviour. The use of a solenoid to operate

the ‘artificial tongue’ would also make it possible to measure precisely the

moment at which the note began, or to control the precise speed and velocity

of the note articulation.

With these modifications, and in conjunction with more numerous measure-

ments of human players it should then be possible to use the artificial mouth to

study the differences between different instruments with the knowledge that

any variations in the transient behaviour must be due to differences between

the two instruments.
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7.6 Final conclusions

The aim of this thesis was to measure, analyse, and quantify the behaviour

of the lips of brass wind musicians during a variety of playing situations.

Examination of the lip opening area during the steady state has shown

that the motion of the lips cannot be described in a simple manner. The

relationship between the lip opening height and the lip opening area seems

to be particularly complex and different stages of the cycle will need to be

treated differently when it comes to precisely reproducing this behaviour

using computational models.

When a brass wind instrument is played loudly it produces one of the most

distinctive timbres in the musical world. Until recently acousticians were not

sure whether or not a constraint of the motion of the lips was a factor in

producing this unique brassy sound. However, it has become accepted that the

primary cause of this increase in energy of the higher harmonics is nonlinear

propagation and wavefront steepening within the bore of the instrument.

The work presented in this thesis provides strong experimental evidence to

support this position.

The starting transient is an extremely important feature of almost any

musical sound. However, research into the acoustics of the brass winds has

tended to concentrate on the behaviour of the steady state. This thesis has built

upon some preliminary work by Bromage [2007] to produce an experimental

method for quantifying the behaviour of the lip-instrument system during

the starting transient. Whilst research is still at an early stage there is now

enough data to help create realistic computational simulations of the starting

transient. More experimental work in this area will further increase the
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accuracy of physical modelling of the lips and could well make it possible

to assist instrument makers with instrument design, manufacture, and quality

control.
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Appendix A

Lip motion in the y − z plane during

extremely loud playing

Figures A.1 and A.2 show a complete cycle of the lip-motion in the y − z plane

for both mezzo forte and ffff playing of the note F3 by player JG on the tenor

trombone. Figures A.3 and A.4 show the same information, but for player

MF whilst figures A.5 and A.6 display the note B♭1 (the pedal note) played by

player JG.
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Figure A.1: A complete cycle of the lip motion for the note F3 played at mf by player
JG as viewed from the side. The corresponding mouthpiece pressure signal is shown below.
The red dot indicates the point in the cycle corresponding to the image above

Figure A.2: A complete cycle of the lip motion for the note F3 played at ffff by player
JG as viewed from the side. The corresponding mouthpiece pressure signal is shown below.
The red dot indicates the point in the cycle corresponding to the image above
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Figure A.3: A complete cycle of the lip motion for the note F3 played at mf by player MF
as viewed from the side . The corresponding mouthpiece pressure signal is shown below.
The red dot indicates the point in the cycle corresponding to the image above

Figure A.4: A complete cycle of the lip motion for the note F3 played at ffff by player
MF as viewed from the side. The corresponding mouthpiece pressure signal is shown below.
The red dot indicates the point in the cycle corresponding to the image above

202



Figure A.5: A complete cycle of the lip motion for the note B♭1 (pedal) played at mf
by player JG as viewed from the side. The corresponding mouthpiece pressure signal is
shown below. The red dot indicates the point in the cycle corresponding to the image above

Figure A.6: A complete cycle of the lip motion for the note B♭1 (pedal) played at ffff
by player JG as viewed from the side. The corresponding mouthpiece pressure signal is
shown below. The red dot indicates the point in the cycle corresponding to the image above

203



Bibliography

[Adachi and Sato, 1996] S. Adachi and M. Sato. Trumpet sound simulation using a
two-dimensional lip vibration model. J. Acoust. Soc. Am., 99(2):1200–1209, 1996.

[Amir, 2009] N. Amir. Does mass matter? examining a concrete didjeridu. In in
Proceedings of Acoustics ’08, Paris, 2009.

[Ayers, 1998a] D. Ayers. Observation of the brass player’s lips in motion. J. Acoust.
Soc. Am., 103(5):2873–2874, 1998.

[Ayers, 1998b] R. D. Ayers. New perspectives on brass instruments. In Proceedings of
the International Symposium on Musical Acoustics, 1998.

[Backus and Hundley, 1971] J. Backus and T. C. Hundley. Harmonic generation in the
trumpet. J. Acoust. Soc. Am., 45:509–519, 1971.

[Backus, 1976] J. Backus. Input impedance curves for the brass instruments. J. Acoust.
Soc. Am., 60(2):470–480, 1976.

[Backus, 1977] J. Backus. The Acoustical Foundations of music. New York, 1977.

[Bailly et al., 2006] L. Bailly, N. Ruty, A. van Hirtum, J. Cisonni, X. Pelorson, and
N. Henrich. Aerodynamic interaction between the vocal folds and the ventricular
bands. In 7th international conference on advances in quantitative laryngology, voice and
speech research, Groningen, Netherlands, 2006.

[Beauchamp, 1980] J. Beauchamp. Analysis of simultaneous mouthpiece and output
waveforms. Audio Engineering Society Preprint, 1980.

[Benade and Jansson, 1974] A. H. Benade and E.V. Jansson. On plane and spherical
waves in horns with nonuniform flare i. Acta Acustica united with Acustica, 31:80–98,
1974.

[Benade, 1969] A. H. Benade. Effect of dispersion and scattering on the startup of
brass instrument tones. J. Acoust. Soc. Am., 45:296–297, 1969.

[Benade, 1976] A. Benade. Fundamentals of musical acoustics. Oxford University Press,
1976.

[Bilbao, 2008] S. Bilbao. Direct simulation for wind instrument synthesis. In
Proceedings of the 11th conference on digital audio effects, Espoo, Finland, 2008.

204



BIBLIOGRAPHY

[Bouhuys, 1969] A. Bouhuys. Human factors in wind-instrument performance. J.
Acoust. Soc. Am., 45(1):296–296, 1969.

[Braden, 2006] A. C. P. Braden. Bore Optimisation and Impedance Modelling of Brass
Musical Instruments. PhD thesis, The University of Edinburgh, 2006.

[Bromage et al., 2003] S. R. Bromage, O. F. Richards, and D. M. Campbell. Repro-
ducibility and control of the embouchure of an artificial mouth for playing brass
instruments. In Proceedings of the Stockholm Musical Acoustics Conference, 2003.

[Bromage et al., 2006] S. Bromage, D. M. Campbell, J. Chick, J. Gilbert, and
S. Stevenson. Motion of the brass player’s lips during extreme loud playing. In
Proceedings of the 8ème Congrès Français d’Acoustique, 2006.
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